In-Class Worksheet
 Discrete Math \& Functional Programming- CSCI 054- Spring 2024 Instructor: Osborn

even: an integer k is even if and only if there exists an integer r such that $k=2 r$
odd: an integer k is odd if and only if there exists an integer r such that $k=2 r+1$
divides: given integers k and $m, k \mid m$ if and only if there exists an integer r such that $m=k r$. This is equivalent to saying that $m \bmod k=0$ or that k evenly divides m.
prime: an integer $k>1$ is prime if the only positive integers that evenly divide k are 1 and k itself.
composite: an integer $k>1$ is composite if it is not prime.
perfect square: an integer k is a perfect square if and only if there exists an integer r such that $k=r^{2}$

For all positive integers $n, 2 n=n^{2}$.

Let x be any integer. If x is a perfect square, then $4 x$ is a perfect square.

$$
\forall i \in\{1,2, \ldots, n\}:[\exists j \in\{1,2, \ldots, n\}:(i \neq j) \wedge(A[i]=A[j])]
$$

$$
\begin{align*}
& \exists y \in \mathbb{R}: \forall x \in \mathbb{R}: x<y \tag{1}\\
& \forall x \in \mathbb{R}: \exists y \in \mathbb{R}: x<y \tag{2}
\end{align*}
$$

$$
\neg(\forall i \in\{1,2, \ldots, n\}:[\exists j \in\{1,2, \ldots, n\}:(i \neq j) \wedge(A[i]=A[j])])
$$

