
csci54 – discrete math & functional programming
pattern matching, guards, where bindings

this week
 week03-group

 please select pages for each question

 week03-ps-coding

 reminders
 assignment regrades
 missing lectures

Last time - types
 specifying the type of a function:

name :: (typeClass var1, typeClass var1, typeClass var2, ...) =>
 var1 -> var2 -> returnVal

Practice
 What are the types of the following functions?

 Discussion:
 use of wildcard character _
 what does (x:y:z:w:l) match to?
 Are both these definitions exhaustive?

 What do the functions do?

f1 'a' _ = []
f1 x y = x:y

f2 (x:y:z:w:l) = w
f2 _ = 0

Last time – pattern matching
 pattern matching:

maxList :: [Integer] -> Integer
maxList [] = error "empty list"
maxList [x] = x
maxList (x:xs) = max x (maxList xs)

More pattern matching
 You can pattern match against multiple lists!

 Consider this function:

equal :: (Eq a) => [a] -> [a] -> Bool
equal [] [] = True
equal _ [] = False
equal [] _ = False
equal (x:xs) (y:ys) =

if x == y
then equal xs ys
else False

Pattern matching
 What breaks if you don't include (only) the 2nd pattern?

 *** Exception: Non-exhaustive patterns in function equal'
 What breaks if you don't include (only) the 1st pattern?

 will always return False

equal' :: (Eq a) => [a] -> [a] -> Bool
equal' [] [] = True
equal' _ [] = False
equal' [] _ = False
equal' (x:xs) (y:ys) =

if x == y
then equal' xs ys
else False

One more practice question
 Consider a function everyOther that takes a list and returns a

new list consisting of every other element in the original list
starting with the first element. As an example, everyOther
[1,5,2,4,-1] should return [1,2,-1]

 What is the type of everyOther?

 How would you implement everyOther using pattern
matching?

case
 We can also pattern-match within the body of a function:

 This can be useful if you need to e.g. make a choice based on
the return value of your recursive case

last' xs =
 case xs of
 [] -> error “empty list”
 [x] -> x
 x:xs -> last' xs

Guards
 pattern-matching lets you specify cases based on values
 guards let you specify cases based on expressions

 can combine the two
equal :: (Eq a) => [a] -> [a] -> Bool
equal [] [] = True
equal _ [] = False
equal [] _ = False
equal (x:xs) (y:ys) =

if x == y
then equal xs ys
else False

equal' :: (Eq a) => [a] -> [a] -> Bool
equal' [] [] = True
equal' _ [] = False
equal' [] _ = False
equal' (x:xs) (y:ys)

| x == y = equal' xs ys
| otherwise = False

Where bindings
 Gives you the ability to name intermediate values

 Scope: where bindings are
visible to entire function

equal' :: (Eq a) => [a] -> [a] -> Bool
equal' [] [] = True
equal' _ [] = False
equal' [] _ = False
equal' (x:xs) (y:ys)

| x == y = equal' xs ys
| otherwise = False

equal' :: (Eq a) => [a] -> [a] -> Bool
equal' [] [] = True
equal' _ [] = False
equal' [] _ = False
equal' (x:xs) (y:ys)

| x == y = rest
| otherwise = False

 where rest = equal' xs ys

Let bindings
 Similar to where

 scope is more localized
 does not bind across guards

 are expressions themselves
 syntax is "let <bindings> in <expression>

ghci> 4 * (let a = 9 in a + 1) + 2

Practice
 What does the following function do?

 Code is a little repetitive---how could it be simplified?

import Data.Char

mystery x y
 | aL > 'm' && bL > 'm' = "group 4"
 | aL > 'm' && bL <= 'm' = "group 3"
 | aL <= 'm' && bL > 'm' = "group 2"
 | otherwise = "group 1"
 where (a:_) = x
 (b:_) = y
 aL = toLower a
 bL = toLower b

importing a module in Haskell
this one gives us functions including toLower

 Bonus section if we’re doing OK on time

Fallible Functions
 We see in functions like maxInt that some cases crash the program
 These “partial functions” can be tricky to work with
 What could we do in Python or Java to take the “maximum” of an empty

list?

 …

Maybe type
 Let’s introduce a new type:

 Maybe (aka Option) is common nowadays in C++, Java, TypeScript,
Rust, & others

 We encode “either something or null” into the type, rather than as a
language feature like undefined or None

 Then we can just write regular functions on it:


data Maybe a =
 Nothing
 | Just a
 deriving (Show, Eq)

orElse :: Maybe a -> a -> a
orElse (Just a) _ = a
orElse Nothing b = b

Maybe

 What’s the issue with the code below?
 maxInt :: [Integer] -> Maybe Integer
 maxInt [] = Nothing
 maxInt [x] = Just x
 maxInt (x:xs) = max x (maxInt xs)

data Maybe a =
 Nothing
 | Just a
 deriving (Show, Eq)

Maybe

 Will this do the trick?
 maxInt :: [Integer] -> Maybe Integer
 maxInt [] = Nothing
 maxInt [x] = Just x
 maxInt (x:xs) = max x (maxInt xs)

 maxInt (x:xs) = max x ((maxInt xs) `orElse` x)

data Maybe a =
 Nothing
 | Just a
 deriving (Show, Eq)

← a Maybe
Integer, not
an Integer!

Maybe

 maxInt :: [Integer] -> Maybe Integer
 maxInt [] = Nothing
 maxInt [x] = Just x
 maxInt (x:xs) = max x ((maxInt xs) `orElse` x))

 maxInt (x:xs) = Just (max x ((maxInt xs) `orElse` x))

data Maybe a =
 Nothing
 | Just a
 deriving (Show, Eq)

^^^ an Integer, not an Option Integer!

Maybe
 maxInt :: [Integer] -> Maybe Integer
 maxInt [] = Nothing
 maxInt [x] = Just x
 maxInt (x:xs) = Just (max x ((maxInt xs) `orElse` x))
 Does this look too complicated?
 There are ways to make it simpler---e.g. using map or fold which we’ll see next

week: map (max x) (maxInt xs)
 Equivalent Python code is actually longer, especially the recursive version

 AND it’s more error-prone

 In Haskell, if we say we have an Integer, then we definitely have an
Integer---not null, not ever.

Fallible Functions
 Error handling is a big topic.
 Not something-or-nothing; good-thing-or-bad-thing
 Haskell has Either (Left a | Right b), which you can use to return more

informative errors (e.g., a file-reading function might return Either
String FileReadError)

 Our pattern matching abilities make dealing with optional values
straightforward (if verbose)

 Higher-order functions, which we’ll see next week, are even more
powerful and concise

	csci54 – discrete math & functional programming pattern matchin
	this week
	Last time - types
	Practice
	Last time – pattern matching
	More pattern matching
	Pattern matching
	One more practice question
	Slide 9
	case
	Guards
	Where bindings
	Let bindings
	Practice (2)
	Slide 15
	Fallible Functions
	Maybe type
	Maybe
	Maybe (2)
	Maybe (3)
	Maybe (4)
	Fallible Functions (2)

