SoCal Workshop Feb 2, 2008

h

= The problem

Event-Driven Programming

Example: Threads vs. Events
= The TaskJava language

Related work

| Jeffrey Fischer, Rupak Majumdar, and Todd Millstein
UCLA Computer Science Dept.

= Applications

ﬁﬁ

= Current solutions for interleaved computation = Current solutions for interleaved computation
suffer a number of drawbacks suffer a number of drawbacks
o Multi-threaded servers o Event-driven servers
= Introduce concurrency = Must manually translate to continuation-passing style
= Performance issues when using large number of threads = Difficult to follow control flow
= Not suitable for some contexts (embedded systems, o May lead to bugs!

some OS kernels, business processes) = Cannot easily take advantage of language features such

as inheritance and exceptions

High performance concurrency while preserving Multithreaded version
program structure.

= Extension to Java foo() {
= Programming model: Tasks “look like” threads, but A
run like events TR
}
= Compiler performs modular CPS translation Blocks in
operating system

Jeff Fischer, UCLA 1

SoCal Workshop

: .

Feb 2, 2008

Multithreaded version

Event-driven version

foo() {
nonblockCall(buf,
foo() { foo2);
X= blockingCall(buf); (| nitiate callw]
ichedul ! !
if (x==0K) {...} and return Continuation
else {...}
foo2(x) {
if (x==0K) {...}
else {...}

: .

Multithreaded version

foo() {

X= blockingCall(buf);

if (x==0K) {...}
else {...}

Scheduler runs

Event-driven version

foo() {
nonblockCall(buf,
foo2);
}

‘ Scheduler runs other events

foo2(x) {
if (x==0K) {...}
else {...}

}

continuation

i

foo() {
nonblockCall(buf,

}

foo2(result) {
if (result==0K){

.
}

foo2); -

).eulse { -

nonblockCall(buf, cnt) {

reg(ey, e, nb2);

Scheduler runs other events

nb2(event) {
if (event==e,) {

cnt(OK);

}
else cnt(NOT_OK);

}

i

nonblockCall(buf, cnt) {

reg(e,, e, nb2);

foo() {
nonblockCall(buf,
foo2); -
}
Register events
and callback with
foo2(result) { scheduler

if (result==0K|
).eulse { -

)

}

Scheduler runs other events

nb2(event) {
if (event==e,) {

cnt(OK);

}
else cnt(NOT_OK);

}

i

foo() {

nonblockCall(buf,
foo2); [

}

bug if nb2 forgets
to call foo2

foo2(result) {
if (result==0K){

).eulse { -

)

}

nb2 forgets to pass
error to foo2

PR
Lost continuation

Lost exception bug if

nonblockCall(buf, cnt) {

reg(ey, e, nb2);

Scheduler runs other events

nb2(event) {
if (event==e,) {

chY(OK);
}
else cnt(NOT_OK);

Jeff Fischer, UCLA

:

Source code

async foo() {

X= blockingCall(buf);

if (x==0K) {...}
else {...}

}

Compiled code

foo() {
blockingCall(buf,
foo2);
}

‘ Scheduler runs other events

foo2(x) {
if (x==0K) {...}
else {...}

}

SoCal Workshop

-

Class WriteTask implements Task {

void run() { ...) The Task
do { write(buffer); Intl?kr;aj:vlg’zks
}} while (buffer.hasRemaining()); ... e eres

async void write(CharBuffer buffer)
throws I0Exception {
Event e = wait(channel, Event. WRITE,
Event.ERROR);

switch (e.type()) {
case Event. WRITE: ch.write(buffer); break;
case Event.ERROR: throw new IOException();

}

}}

Feb 2, 2008

Asychronous
method call

Class WriteTask implements Task

void run() { ...
do { write(buffer);
} while (buffer.nasRemaining()); ...
}
async void write(CharBuffer buffer Methoq
annotation

throws IOException
Event e = wait(channel, Event. WRITE,
Event.ERROR);

switch (e.type()) {
case Event. WRITE: ch.write(buffer); break;
case Event.ERROR: throw new IOException();

}

}}

-

Class WriteTask implements Task {
void run() { ...
do { write(buffer);
} while (buffer.hasRemaining()); ...
}
async void write(CharBuffer buffer)
throws IOException {
Event e = wait(channel, Event. WRITE,
Event.ERROR);
switch (e.type()) {
case Event. WRITE: ch.write(buffer); break;
case Event.ERROR: throw new IOException();
}
1} Errors signaled
by throwing
exceptions

Yield until one
of the events
occurs

=

= Bodies of Task run and async methods split
into continuation passing style
o Explicit callbacks introduced by compiler

= wait (Set) —
<Scheduler>.register(Set, new cb(...))

= Scheduler class provided as option to
compiler

:

= Local variables
a Move to heap if used across async calls

= Nested asynchronous calls
a Introduce temporary variables

= Loops
a Flatten and use switch statement to simulate goto’s

= Exceptions
a Separate callbacks for error control flow

Jeff Fischer, UCLA

-

= Defined semantic rules and type system

= Prove key properties:
o Type soundness
o No lost continuations or lost exceptions

= Translation to Java

SoCal Workshop

T

Program e e’ Current task’s
Evaluator =) expr
E[Wait (es)] l TElsl

Scheduler state

Non-deterministic Sr’i’ (E,D, esy),
Scheduler (Exll, esy),...}

Feb 2, 2008

T

Program e—e’ W
Evaluator =) expr
E[Wait(es)] l TEIE]

Scheduler state

Non-deterministic Sr’i’ (E,D, esy),
Scheduler (Exll, esy),...}

T

e—e’

Program Current task’s|
Evaluator =) expr
E[Wait (es)] l T E[e]

Scheduler state

Non-deterministic Sl—’i' (E4D, es)),
Scheduler (Exll, esy),...}

T

e—e’

Program [Current task’s,
Evaluator =) expr
E[Wait (es)] l T E[e]

Scheduler state

Non-deterministic Sr’i’ (E,D, esy),
Scheduler (Exll, esy),...}

T

Program e e’ Current task’s
Evaluator =) expr
E[Wait (es)] l TElsl

Scheduler state

Non-deterministic Sr’i’ (E,D, esy),
Scheduler (Exll, esy),...}

Jeff Fischer, UCLA

]ﬁ

B Type system tracks blocking methods

m Compiler translates only blocking methods
O Safe
O Coexists with existing libraries

m Compiler generates scheduler-independent
code

O Case study: web server with pure-event and
thread-pooled schedulers

SoCal Workshop

-

= Cooperative multitasking

= Functional programming languages

= Other language approaches

Feb 2, 2008

:

= User-level threads through stack
manipulation

= Many implementations
o E.g. [Engelschall 00], [von Behren, et. al. 03]

= Does not work for most VM-based languages

= Scheduler is fixed

:

languages

= Scheme: avoid inversion of control issues in web
programming
o First-class continuations [Graunke 01], [Queinnec 03]
o Whole program CPS transformations
[Matthews, et. al. 04]

= Concurrent ML [Reppy 91]
o User-level pre-emptive threads and first class events
o Built on top of continuations

:

languages

= “Continuations from generalized stack
inspection” [Pettyjohn, et al. 05]

o Implements Scheme continuations on .NET VM

o Uses exception handlers and stack copying

:

= TAME: C++ Library for event-driven programming
[Krohn and Kohler 06]
o Implements a localized CPS-transform via templates
o Emphasizes flexibility over safety

o MAWL [Ball and Aktins 99]
o DSL for Web applications

= Scala actor library
o Programming provides continuation as a closure
o Type system ensures that “async” call does not return values

Jeff Fischer, UCLA

=

» TaskJava in embedded environments

= Web applications

SoCal Workshop

Feb 2, 2008

m

= Embedded systems generally cannot use threads
a Larger and non-deterministic memory usage
a Non-deterministic scheduling

= TaskJava could address these issues

= Possible targets:
a Virgil, a Java-like language with static allocation
a Sgawk Java VM

allocation

= Annotations help in analyzing stack usage

= Restrictions
o No recursion
o No variables used across asynchronous calls
o Static number of tasks (how?)

= Is TaskJava still useful when compiling
directly to hardware instruction set?

W

= Challenges in server code for web
applications:
o Servers make blocking calls to clients

= Java Servlet model is event-driven to avoid tying up
threads

o Client makes control flow decisions

o Browser uses non-standard control flow model
= Backwards control flow via “back button”
= Forking control flow via “new window” and “new tab”

T

= From the scheduler’s perspective, callbacks
are first class continuations
o Callback may be saved, copied, called at any time

o Can build on ideas from web frameworks in
languages like Scheme and Smalltalk

e

= Keep callbacks in a map, indexed by session id

= Options for continuation management:
a One continuation per session
a One continuation per web page

= Alternatively, encrypt callback and send all state to
client

m

= “Tasks: Language Support for Event-driven
Programming”, PEPM 2007

= http://cs.ucla.edu/~fischer

Jeff Fischer, UCLA

