CS054: Truth tables

The goal of this worksheet is to give you practice with truth tables: what are truth tables and how do you construct them? It's not for a grade - no need to turn it in! I'll post solutions, but you'll get the most out of it if you don't peek.

For all of these questions, I'll use programmatic notation-\&\& for andb $a / k / a \& \&$ in Coq, \| for orb $a / k / a$ \| in Coq, and ! for negb. We write \mathfrak{t} for true and \mathfrak{f} for $f a l$ se; you can also use T and F or \top and \perp. The questions are asking about the definitions we have in Basics.v.

I expect you to simply know the truth tables for II, \&\&, !, and \Rightarrow.

1. Sample: Consider the boolean expression $!a| | b$ given booleans a and b.
(a) How many rows will the truth table have? Answer: four, because there are two variables, a and b, and we must consider each value they consider.
(b) How many columns will the truth table have and what are they? Answer: four; one each for a and b, one for $!a$, and one for the whole expression.
(c) What is the truth table? Answer:

a	b	$!a$	$!a\| \| b$
\mathfrak{t}	\mathfrak{t}	\mathfrak{f}	\mathfrak{t}
\mathfrak{t}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}
\mathfrak{f}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}
\mathfrak{f}	\mathfrak{f}	\mathfrak{t}	\mathfrak{t}

(d) Can you rephrase this expression in terms of other boolean operators? That is, can you find a smaller boolean expression that has an equivalent truth table? Answer: The expression $a \Rightarrow b$ (i.e., impb a b) has the same truth table.
2. Consider the boolean expression $p \|(p \& \& q)$.
(a) How many rows will the truth table have?

Solution: Four, because there are two variables.
(b) How many columns will the truth table have?

Solution: Four: one for each variable (2), one for $p \& \& q$, and one for the outer expression.
(c) What is the truth table?

Solution:

p	q	$p \& \& q$	$p \\|(p \& \& q)$
\mathfrak{t}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}
\mathfrak{t}	\mathfrak{f}	\mathfrak{f}	\mathfrak{t}
\mathfrak{f}	\mathfrak{t}	\mathfrak{f}	\mathfrak{f}
\mathfrak{f}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}

(d) Can you rephrase this expression in terms of other boolean operators? That is, can you find a smaller boolean expression that has an equivalent truth table?

Solution: The formulae $p \|(p \& \& q)$ has the same truth table as the formula p itself.
3. Consider the boolean expression $x \& \&(x|\mid y)$.
(a) How many rows will the truth table have?

Solution: Four, because there are two variables.
(b) How many columns will the truth table have?

Solution: Four: one for each variable (2), one for $x \| y$, and one for the outer expression.
(c) What is the truth table?

Solution:

x	y	$x \\| y$	$x \& \&(x \\| y)$
\mathfrak{t}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}
\mathfrak{t}	\mathfrak{f}	\mathfrak{t}	\mathfrak{t}
\mathfrak{f}	\mathfrak{t}	\mathfrak{t}	\mathfrak{f}
\mathfrak{f}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}

(d) Can you rephrase this expression in terms of other boolean operators? That is, can you find a smaller boolean expression that has an equivalent truth table?

Solution: The formula $x \& \&(x|\mid y)$ has the same truth table as the formula x itself.
4. Consider the boolean expression $(x \& \& y)$ II ($x \& \& z$).
(a) How many rows will the truth table have?

Solution: Eight, because there are three variables.
(b) How many columns will the truth table have?

Solution: Six: one for each variable (3), one for $x \& \& y$, one for $x \& \& z$, and one for the outer expression.
(c) What is the truth table?

Solution:

x	y	z	$x \& \& y$	$x \& \& z$	$(x \& \& y) I I(x \& \& z)$
\mathfrak{t}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}
\mathfrak{t}	\mathfrak{f}	\mathfrak{f}	\mathfrak{t}	\mathfrak{f}	\mathfrak{t}
\mathfrak{t}	\mathfrak{f}	\mathfrak{t}	\mathfrak{f}	\mathfrak{t}	\mathfrak{t}
\mathfrak{t}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}
\mathfrak{f}	\mathfrak{t}	\mathfrak{t}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}
\mathfrak{f}	\mathfrak{t}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}
\mathfrak{f}	\mathfrak{f}	\mathfrak{t}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}
\mathfrak{f}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}

(d) Can you rephrase this expression in terms of other boolean operators? That is, can you find a smaller boolean expression that has an equivalent truth table?

Solution: The formula $(x \& \& y)|\mid(x \& \& z)$ has the same truth table as the formula $x \& \&(y|\mid z)$. The latter formula has one fewer column in its truth table and one fewer function call, so it's "smaller".
5. Consider the boolean expression $!x \& \&!y$.
(a) How many rows will the truth table have?

Solution: Four, because there are two variables.
(b) How many columns will the truth table have?

Solution: Five: one for each variable (2), one for the negation of each variable, and one for the outer expression.
(c) What is the truth table?

Solution:

x	y	$!x$	$!y$	$!x \& \&!y$
\mathfrak{t}	\mathfrak{t}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}
\mathfrak{t}	\mathfrak{f}	\mathfrak{f}	\mathfrak{t}	\mathfrak{f}
\mathfrak{f}	\mathfrak{t}	\mathfrak{t}	\mathfrak{f}	\mathfrak{f}
\mathfrak{f}	\mathfrak{f}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}

(d) Can you rephrase this expression in terms of other boolean operators? That is, can you find a smaller boolean expression that has an equivalent truth table?

Solution: The formula $!x \& \&!y$ has the same truth table as the formula $!(x| | y)$, which has one fewer column and one fewer function call, so it's "smaller".
6. Consider the boolean expression $!a| |!b$.
(a) How many rows will the truth table have?

Solution: Four, because there are two variables.
(b) How many columns will the truth table have?

Solution: Five: one for each variable (2), one for the negation of each variable, and one for the outer expression.
(c) What is the truth table?

Solution:

a	b	$!a$	$!b$	$!a\| \|!b$
\mathfrak{t}	\mathfrak{t}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}
\mathfrak{t}	\mathfrak{f}	\mathfrak{f}	\mathfrak{t}	\mathfrak{t}
\mathfrak{f}	\mathfrak{t}	\mathfrak{t}	\mathfrak{f}	\mathfrak{t}
\mathfrak{f}	\mathfrak{f}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}

(d) Can you rephrase this expression in terms of other boolean operators? That is, can you find a smaller boolean expression that has an equivalent truth table?

Solution: The formula $!a \& \&!b$ has the same truth table as the formula $!(a \& \& b)$, which has one fewer column and one fewer function call, so it's "smaller".
7. Use a truth table to prove that $\|$ is commutative, i.e., $p \| q$ is the same as $q \| p$.

Solution:

p	q	$p \\| \mid$	
\mathfrak{t}	\mathfrak{t}	\mathfrak{t}	$\mathfrak{t} \mid \mathrm{l}$
\mathfrak{t}	\mathfrak{f}	\mathfrak{t}	\mathfrak{t}
\mathfrak{f}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}
\mathfrak{f}	\mathfrak{f}	\mathfrak{f}	\mathfrak{f}

8. Use a truth table to prove that $\|$ is associative, i.e., $p \|(q \| r)$ is the same as $(p \| q) \| r$.

Solution:

p	q	r	$p \\| q$	$q \\| \mid$	$p \\|(q \\| r)$	$(p \\| q) \\| r$
\mathfrak{t}						
\mathfrak{t}	\mathfrak{t}	\mathfrak{f}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}
\mathfrak{t}	\mathfrak{f}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}
\mathfrak{t}	\mathfrak{f}	\mathfrak{f}	\mathfrak{t}	\mathfrak{f}	\mathfrak{t}	\mathfrak{t}
\mathfrak{f}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}
\mathfrak{f}	\mathfrak{t}	\mathfrak{f}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}
\mathfrak{f}	\mathfrak{f}	\mathfrak{t}	\mathfrak{f}	\mathfrak{t}	\mathfrak{t}	\mathfrak{t}
\mathfrak{f}						

9. Write a logical formula that's equivalent to the following truth table over the variables a and b.

a	b	$? ? ?$
\mathfrak{t}	\mathfrak{t}	\mathfrak{f}
\mathfrak{t}	\mathfrak{f}	\mathfrak{f}
\mathfrak{f}	\mathfrak{t}	\mathfrak{f}
\mathfrak{f}	\mathfrak{f}	\mathfrak{t}

What might you name this formula?

Solution: It is $\neg(a \vee b)$; it is called NOR, by analogy to NAND.

Other good practice exercises (for which no solutions will be provided):

- Use truth tables to prove that $\& \&$ and $\otimes(\mathrm{a} / \mathrm{k} / \mathrm{a}$ xorb $)$ are commutative and associative.
- Use truth tables to prove that! is involutive, i.e., ! (! b) is equivalent to b.
- $\mathrm{Is} \Rightarrow(\mathrm{a} / \mathrm{k} / \mathrm{a} \mathrm{impb})$ commutative or associative? Use truth tables to prove or disprove it.

