CS054: Truth tables

The goal of this worksheet is to give you practice with truth tables: what are truth tables and how do you construct them? It's not for a grade—no need to turn it in! I'll post solutions, but you'll get the most out of it if you don't peek.

For all of these questions, I'll use programmatic notation—&& for andb a/k/a && in Coq, | | for orb a/k/a | | in Coq, and ! for negb. We write t for true and f for false; you can also use T and F or \top and \bot . The questions are asking about the definitions we have in Basics.v.

I expect you to simply know the truth tables for $|\cdot|$, &&, !, and \Rightarrow .

- 1. **Sample:** Consider the boolean expression $a \mid b$ given booleans a and b.
 - (a) How many rows will the truth table have? **Answer:** four, because there are two variables, a and b, and we must consider each value they consider.
 - (b) How many columns will the truth table have and what are they? **Answer:** four; one each for a and b, one for !a, and one for the whole expression.
 - (c) What is the truth table? **Answer:**

a	b	!a	$!a \mid \mid b$
ŧ	ŧ	f	ŧ
ŧ	f	f	f
f	ŧ	ŧ	ŧ
f	f	ŧ	ŧ

- (d) Can you rephrase this expression in terms of other boolean operators? That is, can you find a smaller boolean expression that has an equivalent truth table? **Answer:** The expression $a \Rightarrow b$ (i.e., impb a b) has the same truth table.
- 2. Consider the boolean expression $p \mid \mid (p \&\& q)$.
 - (a) How many rows will the truth table have?

Solution: Four, because there are two variables.

(b) How many columns will the truth table have?

Solution: Four: one for each variable (2), one for p && q, and one for the outer expression.

(c) What is the truth table?

ution:

p	q	p && q	$p \mathrel{\mid} \mathrel{\mid} (p \And q)$
ŧ	ŧ	ŧ	ŧ
ŧ	f	f	ŧ
f	t	f	f
f	f	f	f

(d) Can you rephrase this expression in terms of other boolean operators? That is, can you find a smaller boolean expression that has an equivalent truth table?

Solution: The formulae $p \mid \mid (p \&\& q)$ has the same truth table as the formula p itself.

- 3. Consider the boolean expression $x \&\& (x \mid \mid y)$.
 - (a) How many rows will the truth table have?

Solution: Four, because there are two variables.

(b) How many columns will the truth table have?

Solution: Four: one for each variable (2), one for $x \mid y$, and one for the outer expression.

(c) What is the truth table?

Solution:

x	y	$x \sqcap y$	x && $(x \mid \mid y)$
t	ŧ	ŧ	ŧ
t	f	ŧ	ŧ
f	ŧ	ŧ	f
f	f	f	f

(d) Can you rephrase this expression in terms of other boolean operators? That is, can you find a smaller boolean expression that has an equivalent truth table?

Solution: The formula $x \&\& (x \mid \mid y)$ has the same truth table as the formula x itself.

- 4. Consider the boolean expression $(x \&\& y) \mid \mid (x \&\& z)$.
 - (a) How many rows will the truth table have?

Solution: Eight, because there are three variables.

(b) How many columns will the truth table have?

Solution: Six: one for each variable (3), one for x && y, one for x && z, and one for the outer expression.

(c) What is the truth table?

Solution:

x	y	z	x && y	x && z	$(x \&\& y) \mid \mid (x \&\& z)$
ŧ	ŧ	ŧ	ŧ	ŧ	t
ŧ	ŧ	f	ŧ	f	t
ŧ	f	t	f	ŧ	t
ŧ	f	f	f	f	f
f	ŧ	t	f	f	f
f	ŧ	f	f	f	f
f	f	t	f	f	f
f	f	f	f	f	f

(d) Can you rephrase this expression in terms of other boolean operators? That is, can you find a smaller boolean expression that has an equivalent truth table?

Solution: The formula $(x \&\& y) \mid \mid (x \&\& z)$ has the same truth table as the formula $x \&\& (y \mid \mid z)$. The latter formula has one fewer column in its truth table and one fewer function call, so it's "smaller".

- 5. Consider the boolean expression !x && !y.
 - (a) How many rows will the truth table have?

Solution: Four, because there are two variables.

(b) How many columns will the truth table have?

Solution: Five: one for each variable (2), one for the negation of each variable, and one for the outer expression.

(c) What is the truth table?

Solution:

x	y	! x	! y	!x && !y
ŧ	t	f	f	f
ŧ	f	f	ŧ	f
f	ŧ	ŧ	f	f
f	f	ŧ	ŧ	ŧ

(d) Can you rephrase this expression in terms of other boolean operators? That is, can you find a smaller boolean expression that has an equivalent truth table?

Solution: The formula !x && !y has the same truth table as the formula !(x | | y), which has one fewer column and one fewer function call, so it's "smaller".

- 6. Consider the boolean expression !a | | !b.
 - (a) How many rows will the truth table have?

Solution: Four, because there are two variables.

(b) How many columns will the truth table have?

Solution: Five: one for each variable (2), one for the negation of each variable, and one for the outer expression.

(c) What is the truth table?

Solution:

a	b	!a	! b	$!a \mid !b$
ŧ	ŧ	f	f	f
ŧ	f	f	ŧ	ŧ
f	ŧ	ŧ	f	t
f	f	ŧ	ŧ	t

(d) Can you rephrase this expression in terms of other boolean operators? That is, can you find a smaller boolean expression that has an equivalent truth table?

Solution: The formula !a && !b has the same truth table as the formula !(a && b), which has one fewer column and one fewer function call, so it's "smaller".

7. Use a truth table to prove that | | | is commutative, i.e., p | | | q is the same as q | | | p.

8. Use a truth table to prove that | | | is associative, i.e., p | | (q | | r) is the same as (p | | q) | | r.

Solution:	p	q	r	$p \mid \mid q$	$q \mid \mid r$	$p \mid \mid (q \mid \mid r)$	$(p \mid \mid q) \mid \mid r$	
	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	t	
	ŧ	t	f	ŧ	ŧ	ŧ	ŧ	
	ŧ	f	ŧ	ŧ	ŧ	ŧ	ť	
	ŧ	f	f	ŧ	f	ŧ	ť	
	f	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	
	f	ŧ	f	ŧ	ŧ	ŧ	ŧ	
	f	f	ŧ	f	ŧ	ŧ	ŧ	
	f	f	f	f	f	f	f	

9. Write a logical formula that's equivalent to the following truth table over the variables a and b.

a	b	???
ŧ	ŧ	f
ŧ	f	f
f	t	f
f	f	ŧ

What might you name this formula?

Solution: It is $\neg(a \lor b)$; it is called NOR, by analogy to NAND.

Other good practice exercises (for which no solutions will be provided):

- Use truth tables to prove that && and \otimes (a/k/a xorb) are commutative and associative.
- Use truth tables to prove that ! is involutive, i.e., ! (! b) is equivalent to b.
- Is \Rightarrow (a/k/a impb) commutative or associative? Use truth tables to prove or disprove it.