## CS054: Sets

The goal of this worksheet is to give you practice with proofs about sets, using both the element-wise and algebraic approaches. It's not for a grade - no need to turn it in! I'll post solutions, but you'll get the most out of it if you don't peek.

1. Prove that $A \cap A=A$ both ways.

## Element-wise proof:

Solution: First, let $x \in A \cap A$ be given-that is, $x \in A$. We merely need show $\operatorname{xin} A$, which we have assumed.

Next, suppose $x \in A$; we must show $x \in A \cap A$, i.e., $x \in A \wedge x \in A$-which we have immediately.

## Algebraic proof:

## Solution:

$$
\begin{array}{rlr}
A \cap A & =(A \cap A) \cup \emptyset & \cup \text { identity } \\
& =(A \cap A) \cup(A \cap \bar{A}) & \cap \text { complement } \\
& =A \cap(A \cup \bar{A}) & \cap \text { distributivity } \\
& =A \cap U & \cup \text { complement } \\
& =A & \cap \text { identity }
\end{array}
$$

2. Prove that $\bar{\emptyset}=U$ both ways.

When doing proofs about complement, $U$ represents the universe of discourse; you can assume $\forall x, x \in U$. (Try to avoid making such an assumption in proofs that don't involve set complement, though!) You can also assume that $U \neq \emptyset$, and, as a consequence, you can introduce arbitrary sets $A$ into your proof as needed.

## Element-wise proof:

Solution: First, let $x \in \bar{\emptyset}$ be given-that is, $x \notin \emptyset$. We need to show that $x \in U$, but we have that by the definition $U$ as our universe.
Next, suppose $x \in U$; we must show $x \notin \emptyset \ldots$ which is immediate. QED

## Algebraic proof:

Solution: Fixing some arbitrary set $A \ldots$

$$
\begin{array}{rlr}
\bar{\emptyset} & =\overline{(A \cap \bar{A})} \quad \cap \text { complement } \\
& =(\bar{A} \cup \overline{\bar{A}}) & \cap \text { De Morgan's law } \\
& =U \quad \cup \text { complement on } \bar{A}
\end{array}
$$

Or:

$$
\begin{array}{rlr}
\bar{\emptyset} & =\bar{\emptyset} \cup \emptyset & \cup \text { identity } \\
& =\emptyset \cup \bar{\emptyset} & \cup \text { commutativity } \\
& =U & \cup \text { complement on } \emptyset
\end{array}
$$

3. Prove that $\bar{U}=\emptyset$ both ways.

## Element-wise proof:

Solution: Let $x \in \bar{U}$ be given... we need to show $x \in \emptyset$. But we already have a contradiction- $x \in \bar{U}$ holds when $x \notin U$, but $x \in U$ holds for every $x$ !
Let $x \in \emptyset$ be given; we need to show $x \notin U$. But $x \in \emptyset$ is a contradiction!

## Algebraic proof:

Solution: Fixing some arbitrary set $A \ldots$

$$
\begin{array}{rlr}
\bar{U} & =\overline{A \cup \bar{A}} \quad \cup \text { complement } \\
& =\bar{A} \cap \overline{\bar{A}} \quad \cup \text { De Morgan's law } \\
& =\emptyset \quad \cap \text { complement on } \bar{A}
\end{array}
$$

Can you find a solution that doesn't use De Morgan's law, like the second one above? Hint: your solution should be 'dual', i.e., swapping $\cup / \cap$ and $U / \emptyset$.
4. Prove that $\overline{\bar{A}}=A$ both ways. Your element-wise proof will need the law of the excluded middle, i.e., you may assume that $x \in A \vee x \notin A$ for all $x$ and $A$ - that is, you can use the law of the excluded middle.

## Element-wise proof:

Solution: First, let $x \in \overline{\bar{A}}$ be given; we must show $x \in A$. By definition of set complement, $x \notin \bar{A}=\{y \mid y \notin A\}$. If $x$ isn't in the set of things not in $A$, then $x$ must be in $A$ itself-as desired. In the other direction, suppose $x \in A$; we must show $x \in \overline{\bar{A}}$, i.e., $x \notin \bar{A}$.
Suppose for a contradiction that $x \in \bar{A}$. In that case, we would have $x \notin A \ldots$ but we've assumed $x \in A!$ So it must be the case that $x \notin \bar{A}$, and so $x \in \overline{\bar{A}}$.

## Algebraic proof:

| Solution: | $=\overline{\bar{A}} \cap U$ | $\cap$ identity |
| :--- | ---: | ---: |
|  | $=U \cap \overline{\bar{A}}$ | $\cap$ commutatvity |
|  | $=(A \cup \bar{A}) \cap \overline{\bar{A}}$ | $\cup$ complement |
|  | $=(A \cap \overline{\bar{A}}) \cup(\overline{\bar{A}} \cap \overline{\bar{A}})$ | $\cap$ distributivity |
|  | $=(A \cap \overline{\bar{A}}) \cup(A \cup \bar{A})$ | $\cup$ De Morgan's law |
|  | $=(A \cap \overline{\bar{A}}) \cup \bar{U}$ | $\cup$ complement |
|  | $=(A \cap \overline{\bar{A}}) \cup \emptyset$ | question (3) |
|  | $=(A \cap \overline{\bar{A}}) \cup(A \cap \bar{A})$ | $\cap$ complement |
|  | $=A \cap(\overline{\bar{A}} \cup \bar{A})$ | $\cap$ distributivity |
|  | $=A \cap(\bar{A} \cup \overline{\bar{A}})$ | $\cup$ commutativity |
|  | $=A \cap U$ | $\cup$ complement |
|  | $=A$ | $\cap$ identity |
|  |  |  |
|  |  |  |
|  |  |  |

