CS054: Sets

The goal of this worksheet is to give you practice with proofs about sets, using both the element-wise and algebraic approaches. It's not for a grade—no need to turn it in! I'll post solutions, but you'll get the most out of it if you don't peek.

1. Prove that $A \cap A = A$ both ways.

Element-wise proof:

Solution: First, let $x \in A \cap A$ be given—that is, $x \in A$. We merely need show xinA, which we have assumed.

Next, suppose $x \in A$; we must show $x \in A \cap A$, i.e., $x \in A \wedge x \in A$ —which we have immediately.

Algebraic proof:

Solution:					
	$A\cap A$	=	$(A \cap A) \cup \emptyset$	\cup identity	
		=	$(A \cap A) \cup (A \cap \overline{A})$	\cap complement	
		=	$A \cap (A \cup \overline{A})$	\cap distributivity	
		=	$A \cap U$	\cup complement	
		=	A	\cap identity	

2. Prove that $\overline{\emptyset} = U$ both ways.

When doing proofs about complement, U represents the universe of discourse; you can assume $\forall x, x \in U$. (Try to avoid making such an assumption in proofs that don't involve set complement, though!) You can also assume that $U \neq \emptyset$, and, as a consequence, you can introduce arbitrary sets A into your proof as needed.

Element-wise proof:

Solution: First, let $x \in \overline{\emptyset}$ be given—that is, $x \notin \emptyset$. We need to show that $x \in U$, but we have that by the definition U as our universe.

Next, suppose $x \in U$; we must show $x \notin \emptyset$... which is immediate. QED

Algebraic proof:

Solution: Fixing some arbitrary set A... Ø $= (A \cap \overline{A})$ \cap complement $= (\overline{A} \cup \overline{A})$ \cap De Morgan's law U \cup complement on \overline{A} _ Or: Ø $= \overline{\emptyset} \cup \emptyset$ \cup identity $= \emptyset \cup \overline{\emptyset}$ \cup commutativity = U \cup complement on \emptyset

3. Prove that $\overline{U} = \emptyset$ both ways.

Element-wise proof:

Solution: Let $x \in \overline{U}$ be given... we need to show $x \in \emptyset$. But we already have a contradiction— $x \in \overline{U}$ holds when $x \notin U$, but $x \in U$ holds for every x!

Let $x \in \emptyset$ be given; we need to show $x \notin U$. But $x \in \emptyset$ is a contradiction!

Algebraic proof:

Solution: Fixing some arbitrary set A...

 $\overline{U} = \overline{A \cup \overline{A}} \qquad \cup \text{ complement} \\ = \overline{A} \cap \overline{\overline{A}} \qquad \cup \text{ De Morgan's law} \\ = \emptyset \qquad \cap \text{ complement on } \overline{A}$

Can you find a solution that doesn't use De Morgan's law, like the second one above? Hint: your solution should be 'dual', i.e., swapping \cup / \cap and U / \emptyset .

4. Prove that $\overline{\overline{A}} = A$ both ways. Your element-wise proof will need the law of the excluded middle, i.e., you may assume that $x \in A \lor x \notin A$ for all x and A—that is, you can use the law of the excluded middle. **Element-wise proof:**

Solution: First, let $x \in \overline{\overline{A}}$ be given; we must show $x \in A$. By definition of set complement, $x \notin \overline{A} = \{y \mid y \notin A\}$. If x isn't in the set of things not in A, then x must be in A itself—as desired. In the other direction, suppose $x \in A$; we must show $x \in \overline{\overline{A}}$, i.e., $x \notin \overline{A}$. Suppose for a contradiction that $x \in \overline{A}$. In that case, we would have $x \notin A$... but we've assumed $x \in A$! So it must be the case that $x \notin \overline{A}$, and so $x \in \overline{\overline{A}}$.

Algebraic proof:

Solution:				
= 	$\overline{\overline{4}} =$	$\overline{\overline{A}} \cap U$	\cap identity	
	=	$U \cap \overline{\overline{A}}$	\cap commutatvity	
	=	$(A\cup\overline{A})\cap\overline{\overline{A}}$	\cup complement	
	=	$(A \cap \overline{\overline{A}}) \cup (\overline{A} \cap \overline{\overline{A}})$	\cap distributivity	
	=	$(A \cap \overline{\overline{A}}) \cup \overline{(A \cup \overline{A})}$	\cup De Morgan's law	
	=	$(A \cap \overline{\overline{A}}) \cup \overline{U}$	\cup complement	
	=	$(A \cap \overline{\overline{A}}) \cup \emptyset$	question (3)	
	=	$(A \cap \overline{\overline{A}}) \cup (A \cap \overline{A})$	\cap complement	
	=	$A \cap (\overline{\overline{A}} \cup \overline{A})$	\cap distributivity	
	=	$A \cap (\overline{A} \cup \overline{\overline{A}})$	\cup commutativity	
	=	$A\cap U$	\cup complement	
	=	A	\cap identity	