CS054 — How to prove it

Text in black is the "script"—it stays the same every time; text in monospace is the corresponding Coq code. Text in red is the rest of proof—you have to figure that part out!

Proposition	Pronunciation	How to prove it	How to use it
$\forall x, P(x)$	for all x , $P(x)$	Let x be given. Now prove $P(x)$ for this arbitrary x we know <i>nothing</i> about. intros x	We have y and know $\forall x, P(x)$; therefore, $P(y)$. apply/apply in
$\exists x, P(x)$	there exists an x such that $P(x)$	Let $x =$ choose some object, y . Now prove $P(y)$ for your choice of y . exists	We have $\exists x, P(x)$, so let y be given such that $P(y)$. destruct as [x Hp]
$p \Rightarrow q$	p implies q ; if p , then q	Suppose p. Now prove q, having assumed p. You don't have to prove p. intros H	Use #1: We have $p \Rightarrow q$; since proof of p , we have q . apply in Use #2: We must show q , but we have $p \Rightarrow q$, so it suffices to show p . Now go prove p ! apply
$p \wedge q$	p and q	Prove p. Prove q. split	We have $p \land q$, i.e., we have both p and q . destruct as [Hp Hq]
$p \lor q$	p or q	Proof #1: To see $p \lor q$, we show p . Prove p . You don't have to prove q . left Proof #2: To see $p \lor q$, we show q . Prove q . You don't have to prove p . right	We have $p \lor q$. We go by cases. (p) If p holds, then prove whatever your goal was, given p. Ignore q. (q) If q holds, then prove whatever your goal was, given q. Ignore p. destruct as [Hp Hq]
$\neg p$	not p	To show $\neg p$, suppose for a contradiction that p holds. Now find a contradiction, like $0 = 1$ or $q \land \neg q$ or $5 < 1$. intros contra; destruct/inversion	We have $\neg p$; but proof of <i>p</i> —which is a contradiction. Now you're done with whatever case you're in! exfalso; destruct/inversion
		Derived forms	
$p \Leftrightarrow q$	$\begin{array}{c} p \text{ iff } q; \ p \text{ if and} \\ \text{only if } q \end{array}$	We prove each direction separately: (\Rightarrow) Suppose p ; proof of q . (\Leftarrow) Suppose q ; proof of p .	Use #1: We have $p \Leftrightarrow q$; since proof of p , we have q . Use #2: We have $p \Leftrightarrow q$; since proof of q , we have p .
$\forall x, \ P(x) \Rightarrow Q(x)$	for all x such that $P(x)$ holds, $Q(x)$ holds	Let an x be given such that $P(x)$. Prove $Q(x)$, given that $P(x)$ holds.	Choose some y . Since we have $P(y)$, we can conclude $Q(y)$.
$\forall x \in S, \ P(x)$	for all x in S , P(x) holds	Let an $x \in S$ be given. Prove $P(x)$, given that x is in the set S.	Choose some $y \in S$. We have $P(y)$.

Induction on natural numbers

The induction principle for natural numbers is $\forall P, P(0) \Rightarrow (\forall n, P(n) \Rightarrow P(n+1)) \Rightarrow (\forall n, P(n))$. You want to use induction to prove propositions of the form $\forall n, P(n)$. Examples of such propositions include:

$\forall n, \ 2 \cdot \sum_{i=0}^{n} i = n(n+1)$	$\forall n, n \text{ is even } \lor n \text{ is odd}$
$\forall n, n \text{ has at most one set of prime divisors}$	$\forall n, n \text{ has at least one set of prime divisors}$
$\forall n, n \ge 1 \Rightarrow n < 2^n$	$\forall n, \ n > 1 \Rightarrow n! < n^n$

For each of the above, what is the proposition P(n)? To find out, just strip off the $\forall n$ at the front. Let's use the first one as an example of doing an induction.

Theorem: $\forall n, 2 \cdot \sum_{i=0}^{n} i = n(n+1).$ **Proof:** Let an *n* be given. We go by induction on *n* to prove $2 \cdot \sum_{i=0}^{n} i = n(n+1).$ (n=0) We must show P(0), i.e., that $2 \cdot \sum_{i=0}^{0} i = 0(0+1).$ We compute:

$$2 \cdot \sum_{i=0}^{0} i = 2 \cdot 0 = 0 \cdot 0 = 0 \cdot 1 = 0(0+1)$$

(n = n' + 1) Our inductive hypothesis (IH) is that P(n'), i.e., $2 \cdot \sum_{i=0}^{n'} i = n'(n' + 1)$. We must prove P(n), i.e., $2 \cdot \sum_{i=0}^{n} i = n(n+1)$. We compute:

$$2 \cdot \sum_{\substack{i=0\\i=0}}^{n} i$$

= $2 \cdot \sum_{\substack{n'+1\\i=0}}^{n'+1} i = 2 \cdot (n'+1) + 2 \cdot \sum_{\substack{i=0\\i=0}}^{n'} i$ (by the IH)
= $2n'+2+n'(n'+1) = 2n'+2+n'^2+n' = n'^2+3n'+1 = n'^2+3n'+2 = (n'+1)(n'+2)$
= $n(n+1)$

So, here's the template for such an induction proof:

Theorem: $\forall n, P(n)$

Proof: Let an n be given; we prove P(n) by induction on n.

(n = 0) Prove that P(0) holds.

(n = n' + 1) Our IH is P(n'). We must show P(n), i.e., P(n' + 1). Proof of P(n' + 1) using the IH in some creative way.