CS054 - How to prove it

Text in black is the "script"-it stays the same every time; text in monospace is the corresponding Coq code. Text in red is the rest of proof-you have to figure that part out!

Proposition	Pronunciation	How to prove it	How to use it
$\forall x, P(x)$	for all $x, P(x)$	Let x be given. Now prove $P(x)$ for this arbitrary x we know nothing about. intros x	We have y and know $\forall x, P(x)$; therefore, $P(y)$. apply .../apply ... in ...
$\exists x, P(x)$	there exists an x such that $P(x)$	Let $x=$ choose some object, y. Now prove $P(y)$ for your choice of y. exists ...	We have $\exists x, P(x)$, so let y be given such that $P(y)$. destruct ... as [x Hp]
$p \Rightarrow q$	$\begin{aligned} & p \text { implies } q \text {; if } p, \\ & \text { then } q \end{aligned}$	Suppose p. Now prove q, having assumed p. You don't have to prove p. intros H	Use \#1: We have $p \Rightarrow q$; since proof of p, we have q. apply ... in ... Use \#2: We must show q, but we have $p \Rightarrow q$, so it suffices to show p. Now go prove p ! apply ...
$p \wedge q$	p and q	Prove p. Prove q. split	We have $p \wedge q$, i.e., we have both p and q. destruct ... as [Hp Hq]
$p \vee q$	p or q	Proof \#1: To see $p \vee q$, we show p. Prove p. You don't have to prove q. left Proof \#2: To see $p \vee q$, we show q. Prove q. You don't have to prove p. right	We have $p \vee q$. We go by cases. (p) If p holds, then prove whatever your goal was, given p. Ignore q. (q) If q holds, then prove whatever your goal was, given q. Ignore p. destruct ... as [Hp \| Hq]
$\neg p$	not p	To show $\neg p$, suppose for a contradiction that p holds. Now find a contradiction, like $0=1$ or $q \wedge \neg q$ or $5<1$. intros contra; destruct/inversion	We have $\neg p$; but proof of p-which is a contradiction. Now you're done with whatever case you're in! exfalso; destruct/inversion
Derived forms			
$p \Leftrightarrow q$	p iff $q ; p$ if and only if q	We prove each direction separately: (\Rightarrow) Suppose p; proof of q. (\Leftarrow) Suppose q; proof of p.	Use \#1: We have $p \Leftrightarrow q$; since proof of p, we have q. Use \#2: We have $p \Leftrightarrow q$; since proof of q, we have p.
$\forall x, P(x) \Rightarrow Q(x)$	for all x such that $P(x)$ holds, $Q(x)$ holds	Let an x be given such that $P(x)$. Prove $Q(x)$, given that $P(x)$ holds.	Choose some y. Since we have $P(y)$, we can conclude $Q(y)$.
$\forall x \in S, P(x)$	for all x in S, $P(x)$ holds	Let an $x \in S$ be given. Prove $P(x)$, given that x is in the set S.	Choose some $y \in S$. We have $P(y)$.

Induction on natural numbers

The induction principle for natural numbers is $\forall P, P(0) \Rightarrow(\forall n, P(n) \Rightarrow P(n+1)) \Rightarrow(\forall n, P(n))$. You want to use induction to prove propositions of the form $\forall n, P(n)$. Examples of such propositions include:

$$
\begin{array}{lr}
\forall n, 2 \cdot \sum_{i=0}^{n} i=n(n+1) & \forall n, n \text { is even } \vee n \text { is odd } \\
\forall n, n \text { has at most one set of prime divisors } & \forall n, n \text { has at least one set of prime divisors } \\
\forall n, n \geq 1 \Rightarrow n<2^{n} & \forall n, n>1 \Rightarrow n!<n^{n}
\end{array}
$$

For each of the above, what is the proposition $P(n)$? To find out, just strip off the $\forall n$ at the front. Let's use the first one as an example of doing an induction.
Theorem: $\forall n, 2 \cdot \sum_{i=0}^{n} i=n(n+1)$.
Proof: Let an n be given. We go by induction on n to prove $2 \cdot \sum_{i=0}^{n} i=n(n+1)$.
$(n=0)$ We must show $P(0)$, i.e., that $2 \cdot \sum_{i=0}^{0} i=0(0+1)$. We compute:

$$
2 \cdot \sum_{i=0}^{0} i=2 \cdot 0=0 \cdot 0=0 \cdot 1=0(0+1)
$$

$\left(n=n^{\prime}+1\right)$ Our inductive hypothesis (IH) is that $P\left(n^{\prime}\right)$, i.e., $2 \cdot \sum_{i=0}^{n^{\prime}} i=n^{\prime}\left(n^{\prime}+1\right)$. We must prove $P(n)$, i.e., $2 \cdot \sum_{i=0}^{n} i=n(n+1)$. We compute:

$$
\begin{aligned}
& 2 \cdot \sum_{i=0}^{n} i \\
= & 2 \cdot \sum_{i=0}^{n^{\prime}+1} i=2 \cdot\left(n^{\prime}+1\right)+2 \cdot \sum_{i=0}^{n^{\prime}} i \quad(\text { by the IH }) \\
= & 2 n^{\prime}+2+n^{\prime}\left(n^{\prime}+1\right)=2 n^{\prime}+2+n^{\prime 2}+n^{\prime}=n^{\prime 2}+3 n^{\prime}+1=n^{\prime 2}+3 n^{\prime}+2=\left(n^{\prime}+1\right)\left(n^{\prime}+2\right) \\
= & n(n+1)
\end{aligned}
$$

So, here's the template for such an induction proof:

Theorem: $\forall n, P(n)$

Proof: Let an n be given; we prove $P(n)$ by induction on n.
$(n=0)$ Prove that $\mathrm{P}(0)$ holds.
$\left(n=n^{\prime}+1\right)$ Our IH is $P\left(n^{\prime}\right)$. We must show $P(n)$, i.e., $P\left(n^{\prime}+1\right)$. Proof of $P\left(n^{\prime}+1\right)$ using the IH in some creative way.

