CS054: Choice

The goal of this worksheet is to give you practice with the "choice" operation $\binom{n}{k}$ and develop your combinatorics intuitions, particularly with regard to the Binomial Theorem. I hope you'll enjoy the pretty picture, and maybe even have your curiosity tweaked. It's not for a grade—no need to turn it in! I'll post solutions, but you'll get the most out of it if you don't peek.

1. Compute $\binom{5}{3}$, showing your work.

Solution:

$$\binom{5}{3} = \frac{5!}{3! \cdot (5-3)!} = \frac{5!}{3! \cdot 2!} = \frac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1} = \frac{60}{6} = 10$$

2. Reduce $\binom{100}{17}$. No need to calculate an actual number, but write something simpler.

Solution:

$$\binom{100}{17} = \frac{100!}{83! \cdot 17!} = \frac{100 \cdot \dots \cdot 84}{17!} = \frac{P(100, 17)}{17!}$$

3. How many strings of zeros and ones (bitstrings) are there that contain exactly a ones and b zeros?

Solution:

$$\begin{pmatrix} a+b \\ b \end{pmatrix} = \begin{pmatrix} a+b \\ a \end{pmatrix}$$

Briefly, what's the underlying idea/counting method?

You have n+k slots. Choose k for ones; the rest are zeros.

4. How many bitstrings are there that contain a ones and b zeroes such that no two ones are adjacent?

Solution:

$$\binom{b+1}{a}$$

Briefly, what's the underlying idea/counting method?

Fix the zeros. There are b+1 "gaps" for a one; choose a of them.

5. There are $\binom{n}{k}$ ways to choose k objects from n objects without replacement, i.e., without ever choosing the same object twice. How many ways are there to choose k objects from n objects with replacement, i.e., you can choose the same thing multiple times? For example, to choose three things from the set $\{1, 2, 3, 4, 5\}$, one could choose 1, 2, 3 or 1, 1, 5 or 1, 1, 1—to name a few.

Write a formula for the number of ways to choose k from n with replacement.

Solution:
$$\binom{n+k-1}{k}$$

In a few sentences, what's the underlying idea/counting method?

Solution: In addition to the n objects, add k-1 slots as "possible duplicates". We want k-1 because having k of them wouldn't make sense: all duplicates of what?

Why not $\binom{k \cdot n}{k}$? That would distinguish between different choices of replacement.

6.	Please look at the fo this triangle and its it in European math	identities were w															
		Row 0						1									
		Row 1					1		1								
		Row 2				1		2		1							
		Row 3			1		3		3		1						
		Row 4		1		4		6		4		1					
		Row 5		1	5		10		10		5		1				
		Row 6	1	ϵ	;	15		20		15		6		1			
	1Sides are all 1s 2Inner triangle is row count 3Symmetrical																
4 Each number is the sum of the two above it																	
5. Row n sums to 2^n																	
What do you think the next row holds?																	
1 7 21 35 35 21 7 1																	
	Can you give a form	tula for the k th e	ntry	of th	ne nt	h ro	w?										
	Solution: $\binom{n}{k}$																

In light of the formula above, can you take any of the things you noticed and come up with a related theorem or property?

Solution:

$$1. \ \binom{n}{0} = \binom{n}{n} = 1$$

2.
$$\binom{n}{1} = \binom{n}{n-1} = n \text{ when } n \ge 1$$

$$3. \binom{n}{k} = \binom{n}{n-k}$$

4.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
 for $n \ge 1$ and $k \le n$

$$5. \sum_{k=0}^{n} \binom{n}{k} = 2^n$$