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Abstract

Since Java’s release in 1996, researchers have been exploring ways to improve
its type system. On feature that has received a great deal of consistent at-
tention is F-bounded parametric polymorhpism [CCH+89]. After years of
debate, Sun Microsystems is finally adding support for parametric polymor-
phism to the Java language specification in its next major release.

However, there are other type system enhancements that add expressive-
ness to Java. LOOJ, a language extension to Java developed at Williams
by Kim Bruce and his students, includes support for F-bounded parametric
polymorphism as well as for exact types and the ThisType and ThisClass

constructs. Foster’s undergraduate thesis [Fos01] explained how these lan-
guage extensions together add considerably to the expressiveness of the Java
language.

Until now, all proposed modifications to the Java language specification
have had to work around the inflexible type system of its target platform, the
Java Virtual Machine. For example, GJ’s compiler inserts extra type casts
and NextGen produces a complicated type hierarchies to convince the Java
bytecode verifier that the bytecode they produce for their Java extensions
is safe to execute in the JVM.

This thesis presents LOOJVM, a modified JVM that is able to efficiently
run code produced by the LOOJ compiler. LOOJVM includes an enhanced
verifier whose static type system is the same as the LOOJ programming
language and allows code lacking the traditional superfluous type casts to
be verified and run safely. LOOJVM also optimizes bridge method calls for
greater efficiency.
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Chapter 1

Introduction

We shall not cease from exploration and the end
of all our exploring will be to arrive where we
started and know the place for the first time.

– T.S. Eliot

T
he Java1 Programming Language is one of the most popular pro-
gramming languages in use today. Since its release in 1996, nu-
merous proposals have been made to improve its type system. One

feature that has received considerable attention from researchers is para-
metric polymorphism. In many common programming situations, such as
the use of generic data structures, parametric polymorphism has many ad-
vantages over dynamic approaches, which usually require the programmer
to insert type casts whenever accessing data in the structure. These ad-
vantages include “safety (more bugs caught at compile time), expressivity
(more invariants expressed in type signatures), clarity (fewer explicit conver-
sions between data types), and efficiency (no need for run-time type checks)”
[KS01, 1].

1.1 Motivation For Change

Unfortunately, without modifying the Java Virtual Machine (JVM) specifi-
cation, the promise of greater efficiency has yet to be realized. The designs
adding parametric polymorphism, or generics, to Java with little or no JVM
modification have either decreased the computational speed of the resulting
code or increased the amount of space needed at run-time. Both of these
tradeoffs are unreasonable as Java runs on many different server platforms

1Java is a trademark of Sun Microsystems.
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CHAPTER 1. INTRODUCTION 2

where its speed is already too slow and on a large variety of of portable
devices with limited memory. The one approach exploring JVM modifi-
cation for the purpose of efficiently executing code with generics is PolyJ,
designed by Myers, Bank, and Liskov [MBL97]. With generics implemented
in the JVM, they found a 17% speedup in some cases and only suffered a 2%
slowdown in cases not using generics, though they contend the slowdown is
probably due to a lack of time spent on optimization [MBL97]. The speed
increase in their modified VM is due largely to a lower number of run-time
type casts in the bytecode.

Aside from increased efficiency, a JVM with built-in support for para-
metric polymorphism is a better platform for other source languages that
support generics. Due to its prevalence and the continually increasing speed
of modern implementations, the JVM is targeted by compilers for dozens of
languages, such as ML, Haskell, Scheme, and Eiffel, many of which have to
make sacrifices when translating to Java bytecode. For instance, MLJ (an
ML to Java bytecode compiler) does not support functors largely because
the JVM lacks support for generics [BKR99].

The inability for these languages to compile easily to Java bytecode will
become increasingly important as Microsoft’s Common Language Runtime
(CLR), a competing virtual platform, becomes more prevalent. Microsoft is
marketing the CLR as the de facto virtual machine to be targeted by many
important languages, including C# and Java. Moreover, there is already a
working version of the CLR that includes support for parametric polymor-
phism [KS01]. Thus there are advantages to changing the JVM specification
beyond increased efficiency for just the Java Programming Language.

1.2 Initial Objectives

We contend that the JVM specification should be enhanced to include sup-
port for parametric polymorphism and potentially for other enhancements
to its type system, such as ThisType and exact types [BPF97]. With that
goal, we can create an initial list of criteria that our JVM specification
should meet.

• Conceptually Simple: It should be easy to make the specified mod-
ifications to existing JVMs. Companies and open source groups have
invested too much time and money into JVMs to start from scratch.

• Bytecode Compatibility: All existing Java class files should run
correctly on the enhanced JVM according to the current JVM specifi-
cation. Therefore some desired enhancements to the Java type system,
such as making the current covariant subtyping of arrays illegal, un-
fortunately should not be considered.



CHAPTER 1. INTRODUCTION 3

• Efficient Legacy Code: All existing Java bytecode should run effi-
ciently on the enhanced JVM. Efficiency means that it should run just
as fast (or very close to as fast) as on an unmodified JVM.

• Efficient Parameterized Code: Code using new language features
should also run efficiently. In this case, efficiency means that it should
run faster than code containing the casts used in current “generic”
data structures.

• Easy Just-In-Time Compilation: Any JVM modification should
fit into current JIT compilation techniques with little modification to
existing JIT compilers. Even a great interpreter cannot outperform a
mediocre JIT compiler, so any JVM enhancement that rules out easy
JIT compilation is unreasonable.

The underlying idea is that our JVM with an enhanced type system
should be able to do everything the old JVM specification allows while pro-
viding support for parametric polymorphism and, potentially, for other en-
hancements to the type system as well.

1.3 Thesis Overview

This thesis proposes a modification to the JVM specification that includes
support for F-bounded parametric polymorphism, exact types, ThisType,
and ThisClass2. We present a language extension to Java, LOOJ3, that
targets our enhanced JVM, called LOOJVM, and analyze its performance
compared to other methods.

In the next chapter we consider other projects that add generics to
Java and argue that the design and feature set of LOOJ make it the most
amenable to integration with a modified VM. In this discussion, we see how
support for ThisType and exact types increases the expressiveness of the
JVM’s type system and should therefore be included in our modified JVM
specification.

In the following chapters we discuss the design modifications that en-
hance the JVM’s type system to include these features. We purposefully
restrict our modification to the class loader and bytecode verifier.

Finally, we analyze our solution, discuss the state of implementation,
and propose future work.

2
ThisType and exact types were first introduced in [BPF97] as a means to solve the

binary method problem. This is discussed in Chapter 2.
3LOOJ is not an acronym. Instead, it is simply a combination of LOOM, an object

oriented language developed at Williams College by Kim Bruce and his students, and Java.
The name reflects the fact that LOOJ is a Java extension whose type system is derived
from LOOM. LOOJ was previously called Rupiah, the currency used on the Indonesian
island of Java. See [Bur98] and [Fos01] for a complete description of LOOJ/Rupiah.



Chapter 2

Contrasting Java Extensions

Understanding the future depends upon understanding the past.

– Janet Moser

M
any research groups have proposed adding parametric polymor-
phism to Java. Most have concentrated on enhancing the source
language specification and have avoided modifications to Java’s

target architecture, the Java Virtual Machine. Changing the JVM specifi-
cation should be done reluctantly as it would require dozens of commercial,
open source, and even silicon implementations to be updated in order to run
software taking advantage of any new bytecode language features. There-
fore, before committing to a particular extension we must convince ourselves
that the current proposals are lacking in some way. Furthermore, we should
also consider what other language extensions should be supported in an
enhanced JVM.

In this chapter we analyze the most influential designs that add para-
metric polymorphism to Java and discuss which language extensions should
be supported by an enhanced JVM. Some designs, such as PolyJ, already
include JVM specification changes. In these cases we compare the design of
the project to our list of goals for our JVM modification.

Before considering the different extensions, we will first explain which
enhancements to Java’s type system we are considering and show how they
are represented in the LOOJ source language.

2.1 Potential Type System Enhancements

The enhancements to Java’s type system that we are considering are F-
bounded parametric polymorphism, exact types, and the ThisType and
ThisClass constructs. This section gives a crash course in these concepts.

4



CHAPTER 2. CONTRASTING JAVA EXTENSIONS 5

2.1.1 Parametric Polymorphism

Parametric polymorphism is a language feature that is well understood
and is included in many modern programming languages, such as C++ and
ML. In object-oriented terminology, a polymorphic type or polymorphic

class (also referred to as a generic type or generic class) is a function
from types to a set of polymorphic instantiations. An instantiation of

a polymorphic type refers to a specific version of the generic template in
the range of the function.

Analogously, a polymorphic method is a function from types to a set
of concrete, specialized versions of that method. Experienced ML program-
mers make heavy use of polymorphic methods.

Consider the following generic class specification:

public ListNode<T> {

T value;

public T getValue() {

return this.value;

}

public void setValue(T value) {

this.value = value;

}

}

ListNode<T> is not an actual type, but rather a general specification that
can be specialized for different situations. T is called a type parameter

because it is a parameter to the function whose range is a set of specialized,
concrete classes. One example of such a specialization is:

ListNode<String>

An object of type ListNode<String> behaves as if it were programmed as
the following class:

public ListNode<String> {

String value;

public String getValue() {

return this.value;

}

public void setValue(String value) {

this.value = value;

}

}
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To make a type parameter more useful, it can be bound in its declara-
tion. Whenever we encounter a type parameter we treat it in type checking
as if it were an extension of its bound. In the following example, the lo-
cal variables a and b are treated as if they were of a type that extends
Comparable because they are declared to be type T, which is bounded by
Comparable.

interface Comparable {

// returns whether this is >,<,= to other

public int compareTo(Comparable other);

}

class MergeSort<T implements Comparable> {

void merge() {

T a, b;

...

if (a.compareTo(b) == 0) { ... }

...

}

}

So we see that parametric polymorphism allows us to create generic
data structures that can behave differently in different situations. This is a
dramatic improvement over the current expressiveness of Java’s type system.
Most researchers agree on this, but many disagree on the way it should be
implemented in an extension to Java.

Heterogeneous versus Homogeneous Implementations of Polymor-

phism

Implementations of parametric polymorphism come in two distinct forms:
hetergeneous and homogeneous. In a purely heterogeneous implemen-
tation, an actual class or method is created for every different instantiation
encountered. To continue with our ListNode<T> example, when the com-
piler encounters a ListNode<String> it would actually produce a full copy
of the code in which every occurrence of T is replaced by String. The C++
template system is an example of this type of implementation.

The largest drawback associated with heterogeneous implementations is
the large possibility of code-bloat occurring because every instantiation of
a polymorphic type has its own source code and run-time memory require-
ments. There are a few optimization strategies used to limit the amount
of redundant code. Two of these optimizations are presented later in this
chapter with two of the heterogeneous designs, NextGen and Agesen et al.’s
proposal. Further run-time overhead with heterogeneous implementations
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occurs while loading program code into memory. It takes time to load each
specific version of a polymorphic type from disk or the network.

In a purely homogeneous implementation, the generic code is the only
copy of the code physically present. Instantiations only exist to allow for
static type-checking. Thus ListNode<String> and ListNode<Integer> are
only treated as different types statically, while at run time they both use
the same compiled code.

Homogeneous implementations do not suffer from code-bloat, but they
do have their own shortcomings. For example, ListNode<String> and
ListNode<Integer> are different types, and so each should have its own
set of static variables. However, in a purely homogeneous implementation
they would share static variables because they are the same type at run
time.

In addition to purely heterogeneous and homogeneous implementations,
there are also designs that are a mixture of both. The JVM modification
we present in this thesis is an example of such a hybrid design.

2.1.2 F-bounded Parametric Polymorphism

F-bounded parametric polymorphism for object-oriented languages
was introduced by Canning et al. [CCH+89]. This particular type of poly-
morphism refers to the ability to use a type variable in its bound. For
example, T is an F-bounded type in class A<T extends B<T>>.

LOOJ’s syntax for F-bounded polymorphism comes from GJ [BOSW98],
which inherits its polymorphic syntax from the template system of C++.
Class type parameters are declared in the class declaration while method
type parameters are declared in the method declaration. The following is a
(useless) example of LOOJ source code that contains type parameters. For
a full description of LOOJ syntax, see Foster’s undergraduate thesis [Fos01].

public class A<T> { ... }

// W is an example of an F-bounded polymorphic type

public class B<T, W extends A<W>> {

// a polymorphic method’s syntax

public <N> void m(N n, T t) { ... }

}

2.1.3 A Consistent Example

Thus far we have been speaking primarily in theoretical terms. For the rest
of this chapter, it is going to be helpful to have a concrete and consistent
code example. We will use the following basic, generic linked list. Many of
the implementation details are unimportant and have been omitted.



CHAPTER 2. CONTRASTING JAVA EXTENSIONS 8

One thing to take from the example is that there currently is no way to
create a new object of the same type as a type parameter (much as there is
no way to directly create a new object with the same type as an interface).
That is, if T is a type parameter then the following code is illegal:

new T();

To solve this we use the factory design pattern, as shown in figure 2.1. As
we discuss other language features, such as exact types and ThisType, we
will improve the initial generic design for ListNode<T>.

2.1.4 Exact Types

A variable has an exact type if the only value it can hold is exactly the
type declared, not an extension of it. An exact type is declared by using the
character ’@’ in front of the normal type, as in @ListNode<T>.

To illustrate the type checking rules, consider the following set of classes.

interface I {

public void foo();

}

class A implements @I {

public A() { ... }

public void foo() { ... }

}

class B extends A {

public B() { ... }

public void bar() { ... }

}

Now consider the following code.

A a = new A();

A a = new B();

@A a = new A();

@A a = new B(); /* ERROR */

I i = new A();

i = new B();

@I i = new A();

@I i = new B(); /* ERROR */

The first error occurs because exactly an A is required by the left hand side
of the assignment whereas an extension of A is provided on the right hand
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public interface Factory<T> {

// return a new T

public T produce();

}

public class ListNodeFactory<T>

implements Factory<ListNode<T>> {

public ListNode<T> produce() {

return new ListNode<T>();

}

}

public class ListNode<T> {

protected T value;

protected ListNode<T> next;

public T getValue() {

return this.value;

}

public void setValue(T value) {

this.value = value;

}

public ListNode<T> getNext() {

return this.next;

}

public void setNext(ListNode<T> next) {

this.next = next;

}

}

Figure 2.1: A first attempt to write a generic node for a linked list in LOOJ.
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side. The second error occurs because B does not implement I exactly, since
it added the method bar().

Thus a class only implements an interface exactly if:

• it declares that it implements the interface exactly (that is, even if a
class accidentally implements an interface exactly, it still must declare
the implementation to be exact),

• it contains only the methods required by the interface (as well as any
number of constructors).

Exact types are used to help solve the binary methods problem, which
we discuss next.

2.1.5 ThisType and Binary Methods

In Java, the keyword this refers to the currently executing object. In LOOJ,
this concept is extended to include the keywords ThisType and ThisClass.
We define ThisType and ThisClass as follows:

• ThisType refers to the public interface of the currently executing ob-
ject. To be consistent with Java’s use of interfaces, ThisType has
access to all public methods but not to public fields of the currently
executing object.

• ThisClass refers to the actual class of the currently executing object.
It has access to everything in the currently executing object, including
private variables (though this property is likely to change in the next
release of the LOOJ language specification).

What follows in this section is a very brief description of ThisType that
illustrates how it adds expressiveness to Java. ThisClass is covered in more
detail in the next section. ThisType is described more completely in [BPF97]
and its implementation in LOOJ is fully described in [Fos01].

ThisType is needed to solve problems arising from the use of binary
methods. A binary method is a method that has a parameter of the same
type as the object receiving the method call. In our linked list example, the
setNext() method in ListNode<T> is a binary method.

Many problems with binary methods arise when they are inherited. For
example, suppose we define a class DoubleListNode<T> for a doubly linked
list as follows:

class DoubleListNode<T> extends ListNode<T> {

protected DoubleListNode<T> previous;

public void setNext(DoubleListNode<T> next) {

this.next = next;
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if (next != null)

next.previous = this;

}

public DoubleListNode<T> getPrevious() {

return this.previous;

}

public void setPrevious(DoubleListNode<T> previous) {

this.previous = previous;

if (previous != null)

previous.next = this;

}

}

There are a number of problems with even this simple example. Conceptu-
ally, DoubleListNode<T> overloads setNext() instead of overriding it be-
cause its parameter is a different type than that of the original setNext()
method. Overriding the method is conceptually what the author of such
a class would intend in order to avoid the following run-time possibility, in
which the version of setNext() called dynamically would be the one defined
in ListNode<T>.

DoubleListNode<String> a = new DoubleListNode();

ListNode<String> b = new ListNode();

// statically type-safe, but now a singly linked node

// has found its way into a doubly linked list

a.setNext(b);

Furthermore, the following basic code does not pass static type checking.

DoubleListNode<String> a = new DoubleListNode<String>();

// STATIC TYPE ERROR:

// the type returned by getNext() is ListNode!

a.getNext().getPrevious();

By using ThisType, we can avoid these problems. The code in figure 2.2
is revised source code for ListNode<T> and DoubleListNode<T> that takes
advantage of the ThisType language extension.Note that the mutually recur-
sive code in setNext() and setPrevious() reflects the fact that variables
of type ThisType do not have access to an object’s instance variables. Thus
the statement:

previous.next = this;
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class ListNode<T> {

protected T value;

protected ThisType next;

public T getValue() { return this.value; }

public void setValue(T value) { this.value = value; }

public ThisType getNext() { return this.next; }

public void setNext(ThisType next) {this.next = next;}

}

class DoubleListNode<T> extends ListNode<T> {

protected ThisType previous;

public void setNext(ThisType next) {

this.next = next;

if (next != null && next.getPrevious() != this) {

next.setPrevious(this);

}

}

public ThisType getPrevious() {

return this.previous;

}

public void setPrevious(ThisType previous) {

this.previous = previous;

if (previous!=null && previous.getNext()!=this) {

previous.setNext(this);

}

}

}

Figure 2.2: A second, not yet correct attempt to write a generic node for a
linked list in LOOJ.
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would be illegal because previous is of type ThisType.
When DoubleListNode<T> inherits next and getNext(), both will be

of type ThisType, which now correctly refers to the public interface of
DoubleListNode<T> and not ListNode<T>’s.

Using ThisType in our new class definitions ensures that ListNode<T>’s
can no longer find their way into doubly linked lists, and that the example
that fails static type checking now passes. However, our implementation
still has some problems as we will illustrate next.

Matching Classes and Exact Method Receivers

The use of the ThisType construct alone does not fully solve the binary
method problem. Consider the following method.

void ThisMightFail(ListNode<T> a, ListNode<T> b) {

a.setNext(b);

}

If we invoke this method with a DoubleListNode<T> as the first parameter
and a ListNode<T> as the second, we get an error when we try to execute
setNext(), which requires a DoubleListNode<T> and not a ListNode<T>.
That is, DoubleListNode<T>’s setNext() method takes a ThisType, which
refers to the public interface of DoubleListNode<T>’s. Thus a ListNode<T>

clearly cannot be passed as in the above situation.
We note that DoubleListNode<T> therefore cannot be used wherever

a ListNode<T> is required. We say that DoubleListNode<T> matches

ListNode<T>. In general, wherever the latter is needed, the former can
be used, but not when it is the receiver of a binary method call.

We would like our language extension to be statically type safe, and
thus at compile time catch errors like one found in ThisMightFail() above.
Therefore LOOJ places the following restriction on the receivers of binary
methods.

The object receiving a binary method call, where the method
being called uses ThisType or ThisClass as parameters, must
be an exact type.

Following this rule, we can rewrite our ThisMightFail() method to be
correct.

void ThisMightFail(@ListNode<T> a, ListNode<T> b) {

a.setNext(b);

}

Notice that only the method receiver, a, needs to be an exact type. There
is no problem in this method with setting the next variable in a to point to
a DoubleListNode<T> and not a normal ListNode<T>.
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class ListNode<T> {

...

protected ThisType next;

public ThisType getNext() {

return this.next;

}

public void setNext(@ThisType next) {

this.next = next;

}

}

class DoubleListNode<T> extends ListNode<T> {

protected ThisType previous;

public void setNext(@ThisType next) {

this.next = next;

if (next != null &&

next.getPrevious() != this) {

next.setPrevious(this);

}

}

public ThisType getPrevious() {

return this.previous;

}

public void setPrevious(@ThisType previous) {

this.previous = previous;

if (previous != null &&

previous.getNext() != this) {

previous.setNext(this);

}

}

}

Figure 2.3: A third, still not completely correct attempt to write a generic
node for a linked list in LOOJ.
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Although the ThisMightFail() method is now statically type safe, we
see that other methods in ListNode<T> and DoubleListNode<T> violate
our new rule. We correct the source by ensuring that no receiver of a bi-
nary method is an inexact type in figure 2.3. That code is perfectly legal
LOOJ code and will statically type check. However, statements such as the
following are still not legal.

listnodeA.getNext().setNext(listnodeB);

Here, getNext() returns an inexact type, which is then the receiver of the
binary method call to setNext(). A final solution to the ListNode problem
is presented in figure 2.4. This design ensures that a list will be composed
entirely of ListNode<T>’s or DoubleListNode<T>’s, but not a mix of the
two.

So we see that exact types and the ThisType construct add expressive-
ness to the Java language by allowing for clear, type safe implementations
of binary methods. However, an object of type ThisType cannot access an
object’s instance variables and there are some situations where that func-
tionality is useful.

2.1.6 ThisClass

Recall that while ThisType refers to the public interface of the currently
executing object, ThisClass refers to the class itself, including all private
and protected data. Therefore, ThisClass cannot be used in an interface as
its usage does not make sense in that context. That is, the following code
is illegal:

interface I {

public void illegalParameterType(ThisClass foo);

}

In practice, ThisType solves most tricky inheritance problems for Java.
However, consider the following situation in which it is insufficient.

class A {

protected int x;

public boolean equals(ThisType t) {

// ERROR! ThisType is the public interface of

// A, and x is an instance variable.

return x == t.x;

}

}

Unlike an object of type ThisType, an object of type ThisClass has access
to all private and protected information, so this corrected version of A is
legal.
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class ListNode<T> {

protected T value;

protected @ThisType next;

public T getValue() { return this.value; }

public void setValue(T value) { this.value = value; }

public @ThisType getNext() { return this.next; }

public void setNext(@ThisType next) {

this.next = next;

}

}

class DoubleListNode<T> extends ListNode<T> {

protected @ThisType previous;

public void setNext(@ThisType next) {

this.next = next;

if (next != null &&

next.getPrevious() != this) {

next.setPrevious(this);

}

}

public @ThisType getPrevious() {

return this.previous;

}

public void setPrevious(@ThisType previous) {

this.previous = previous;

if (previous!=null && previous.getNext()!=this) {

previous.setNext(this);

}

}

}

Figure 2.4: A final, correct implementation of a generic node for a linked
list written in LOOJ.



CHAPTER 2. CONTRASTING JAVA EXTENSIONS 17

class A {

protected int x;

public boolean equals(ThisClass t) {

return x == t.x;

}

}

ThisClass can be used in place of ThisType whenever access to a class’s
instance variables is helpful, although, again, it cannot be used in interfaces.

ThisClass Constructors

In addition to providing a specification for a modified JVM, this thesis is
also acting as an update to the previous specification in [Fos01]. Therefore,
wherever discrepancies exist between the two works, this work should be
considered to contain the more recent specification.

The last LOOJ language specification included ThisClass constructors.
That is, the following statement would have been legal LOOJ source.

new ThisClass( ... );

In the latest version of LOOJ ThisClass constructors were abandoned in
favor of the factory design pattern, which takes very little time to code and
is considered good software engineering practice.

2.1.7 First Class Types

We have seen how the addition of F-bounded parametric polymorphism,
exact types, ThisType, and ThisClass add expressiveness to the Java pro-
gramming language. However, that expressiveness becomes limited if an
object of one of these new types has fewer language features available to it
than a normal Java class or interface.

A first class type is a type that can be used in all the standard ways. In
Java, a first class type can be used in type casts and instanceof operations.
Furthermore, unless the type is primitive, it should be able to take advantage
of Java reflection. For example, if polymorphic types are treated as first class
in a language extension, the following lines of code would be legal:

o instanceof ListNode<String>

(ListNode<String>)o

We introduce this concept here because some extensions do not treat poly-
morphic classes as first class and this is certainly a characteristic of polymor-
phic classes that we would like to see supported in any language extension
adding parametric polymorphism to Java.
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2.2 GJ

GJ [BOSW98] is the most popular extension adding F-bounded parametric
polymorphism to Java. Indeed, the current JDK Java compiler was largely
taken from the GJ compiler and Sun is working with Odersky and others
from the GJ project to officially include generics in Java’s next major release.

Much of GJ’s success arises from its design simplicity. It is a homoge-
neous implementation of parametric polymorphism. It translates source
code with generics into bytecode by replacing type variables with their
bounds (or Object if no explicit bound is given) and inserting casts that
are guaranteed to succeed so that the resulting bytecode passes verification.
This process is called erasure because it essentially erases GJ-specific type
information and replaces it with standard Java. This process is illustrated
in subsection 3.4.1.

One consequence of using erasure to translate GJ source code to Java
bytecode is a need for extra run-time casts. Another consequence of the loss
of GJ-specific static type information is that the language does not treat
parameterized types as first class. That is, it is illegal to write the following
in GJ:

o instanceof ListNode<String>

as no information about parameterized types exists beyond compilation,
and in particular at run time. This costs associated with erasure are also
discussed in subsection 3.4.1.

Despite the loss of GJ-specific type information during compilation, sep-
arate compilation for polymorphic classes is still possible because class files
generated by GJ contain an attribute with the necessary type information.
This process is described in depth in Chapter 4.

The major complication that GJ has to deal with occurs when a bound is
restricted in a subclass. For example, consider two classes, A and B, defined
below.

class A<T> {

void foo(T t) { ... }

}

class B<T extends Comparable> extends A<T> {

void foo(T t) { ... }

}

This is perfectly legal, but when GJ translates it to standard Java the sig-
nature of foo() in B erases to foo(Comparable t) while that in A erases
to foo(Object t). Thus in the source language foo() is overridden in B

while in the compiled bytecode foo() is overloaded in B. This causes method
binding difficulties that are solved by constructing a bridge method to
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guarantee that the correct method is called at run time. Bridge methods
and their impact on the performance of GJ code are discussed in more detail
in Chapter 3.

One major advantage to GJ is that existing library classes can be easily
retrofitted as polymorphic classes by creating a “wrapper” class representing
its methods. For instance, suppose we have an existing, non-polymorphic
class LinkedList. We can create a small parameterized wrapper class
LinkedList<T>, consisting only of method declarations but no definitions,
that erases to the original class and that we can use to type check instantia-
tions of the polymorphic class at compile time. Thus without modifying or
re-implementing LinkedList, and even without creating a new class that is
needed beyond compile time, we have effectively turned the original, fixed
data structure into a polymorphic class. As an enormous amount of unpa-
rameterized library code and data structures currently exist, such as all the
classes in the java.util package, this has been a big selling point for GJ. No
other proposal boasts this functionality.

As GJ does not treat parametric types as first class types, it does not
include full parametric polymorphism. If possible, we would rather use an
extension that treats parameterized types as first class.

2.3 Regarding Heterogeneous Approaches

GJ is an example of a homogeneous implementation of parametric polymor-
phism because all polymorphic types erase to the same type at run time.
In the previous section, we showed how this loss of information caused
GJ to disallow certain operations on polymorphic instantiations, such as
instanceof and type casts.

One general approach that makes it relatively easy to treat instantiations
of a parameterized type as first class without JVM modification is through
heterogeneous compilation. As described in section 2.1.1, a heterogeneous
compiler would create a new class for every new instantiation of a parame-
terized class. Thus the first major benefit to using the purely heterogeneous
implementation in a Java extension is that instantiations of polymorphic
types are automatically first class, as they are just regular Java classes.

Another benefit to heterogeneous compilation is that it could poten-
tially yield a boost in speed since casting becomes largely unnecessary. For
instance, if a LinkedList<T> is instantiated with String its methods would
actually return String objects. Unfortunately, in the only direct speed
comparison between heterogeneous and homogeneous implementations, the
Pizza team1 found that this efficiency boost, which was minimal to begin
with, was often outweighed by the increased load time necessary in finding
and loading each instantiation of the parameterized class [ORW98].

1The Pizza project evolved into GJ and was developed by many of the same people.
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In addition to extra loading time, which can become considerable when
multiple instantiations of a parameterized class are sent over a network, it
is impossible to instantiate a new parameterized type on the fly because
instantiated versions of a polymorphic class are generated by the compiler.
This is inconsistent with the full reflective capabilities offered by Java.

In summary, the major advantage to using a standard heterogeneous
approach is that it allows objects of a parameterized type to be treated
as first class at run time without taking a large performance hit or with-
out modifying the JVM. The major disadvantages include greater run-time
memory requirements, extra load-time needed to load multiple instantia-
tions of a polymorphic type, and the inability to create new instantiations
of a polymorphic type on the fly.

In addition to these disadvantages, it turns out that purely heteroge-
neous implementations allow violations of Java’s encapsulation rules regard-
ing packages, as we will now illustrate.

2.3.1 The Package Dilemma

The way Java’s package protection mechanism is designed actually makes a
purely heterogeneous approach incorrect2. Suppose we have two packages,
PackageA and PackageB. PackageA contains the public parameterized class
A<T> and PackageB contains a public class B and a package protected class
HiddenB. Consider the following situation:

package PackageA:

class A<T> {

T t;

T getT() {

return t;

}

}

package PackageB:

class B {

public void crackPackageB() {

A<HiddenB> a = new A<HiddenB>();

}

}

When we compile this code, it produces a specialized class that represents
the instantiation of A with HiddenB.

PackageA:

class A_HiddenB {

2This was first documented in [ORW98].
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HiddenB t;

HiddenB getT() {

return t;

}

}

Thus class A HiddenB in PackageA explicitly uses a protected class from
package B! This clearly violates the idea of package protection in Java. To
solve this, one might add a restriction that disallows instantiation of a pa-
rameterized class from outside the current package with a package protected
class from within the package, but this decreases the flexibility of parametric
polymorphism by restricting it to fewer situations.

The package problem was not solved in this next heterogeneous ap-
proach.

2.4 Fixing Some Code Bloat

Despite the general run-time overhead associated with heterogeneous ap-
proaches, there have been proposals that minimize its cost. Agesen et al.
call for a small modification to the JVM’s class loader and class file speci-
fication that allows for load-time heterogeneity as opposed to compile-time
heterogeneity [AFM97]. This solves the problem of file bloat, which we have
said is a potentially serious problem when transferring a program through a
network. Furthermore, by having the generic version of the class file around
until load time, client classes can create instantiations on the fly, which, as
mentioned earlier, is not possible in a heterogeneously compiled approach.

Thus heterogeneous instantiations of a class A<T> are created by the
modified class loader. Aside from excess time spent finding and loading
instantiated versions of a polymorphic class from memory or from the net-
work, the run-time costs associated with this method are the same as for a
purely heterogeneous approach.

One benefit to their approach is that it allows mixins. Traditionally
mixins are difficult to implement because they make separate compilation of
code difficult. Since their loader produces the heterogeneous instantiations,
it can type check mixins at load time just before execution, allowing for
proper static type checking in the verifier.

Mixins are not supported by LOOJ or by our proposed VM modifica-
tion, so the problems they raise with current type checking models are not
explored here. See [AFM97] for a discussion of mixins.

2.5 NextGen

Cartwright and Steele’s NextGen is one of the more ambitious proposals
[CS98]. Their goal is to go beyond GJ and support first class parametric
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polymorphism without modifying the JVM. However, the implementation
of NextGen is so complicated that it is unclear whether any correct imple-
mentation exists.

NextGen is basically a heterogeneous translation, meaning that each
instantiation of a parameterized class is represented as a separate class. It
is not purely heterogeneous, however, as most of the code of a parameterized
class is shared between its various instantiations.

It accomplishes this by building a type hierarchy consisting of lightweight
wrapper classes and interfaces. When a polymorphic class is compiled, a
lightweight wrapper interface and an abstract class representing the unin-
stantiated parameterized class are created. When a new parameterized type
is instantiated at the source code level, a new class is created in which
specific code “snippets” are generated to handle the instantiated type pa-
rameter. That is, every mention of a type parameter in a parameterized
class is replaced by an abstract method call to a snippet function that is
implemented (i.e. generated by the NextGen compiler) in the lightweight
wrapper class representing the instantiation of the parameterized type.

Thus most of a class’s code is in the abstract parent class while the
lightweight child classes, which represent instantiated versions of the parent,
contain only a small amount of specialized code. In this way NextGen’s
design, though effectively heterogeneous as multiple classes exist for each
instantiated type, does not suffer as much code or run-time memory bloat
as other purely heterogeneous approaches.

However, the class loader still has to load an interface, an abstract class,
and, potentially, multiple lightweight wrapper classes. Furthermore, just
as with purely heterogeneous implementations, new instantiations cannot
be created on the fly because the compiler generates all the heterogeneous
instantiations,

A more detailed description of the translation process can be found in
[CS98]. For our purposes, it is sufficient to note that the primary benefits
of NextGen are that it treats instantiations of a polymorphic class as first
class without any modification to the JVM and with less overhead than a
standard heterogeneous approach. However, should the JVM support para-
metric polymorphism, these benefits would become unimportant. In other
words, the extremely complicated translation and generated inheritance hi-
erarchy become unnecessary with a smarter JVM.

2.6 LM

Like NextGen, Load-Time Management (LM) treats parameterized types
as first class types without any modification to the virtual machine. Like
GJ, it is a homogeneous approach. It accomplishes this by adding instance
variables to a polymorphic class that remember information about type vari-
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ables for specific instantiations at run time. Also like GJ, LM uses erasure
when translating its source code into Java bytecode.

To see how this homogeneous approach successfully treats polymorphic
types as first class, consider the following polymorphic class:

class A<T> { ... }

When LM compiles this class, it would effectively output the following Java
code:

class A {

public Object T;

...

}

where T is an object containing information about the type parameter at run
time. It would then translate expressions such as type casts and instanceof

involving instantiations of polymorphic types into multi-line statements that
use the instance variable T. Continuing with our previous example, this single
LM statement:

(o instanceof A<String>)

would be translated (roughly) to the following code:

(if ((o instanceof A) && (o.T instanceof String)))

The exact details of this translation are not relevant to us and can be found
in [VN00].

Unlike the heterogeneous implementations encountered, it does not suffer
from much run-time space overhead, though there is some space overhead
due to objects keeping LM type information in instance variables. However,
simple operations such as instanceof and checked type casts become more
complex, multi-line statements that take longer to execute.

This approach is very similar to the one taken by LOOJ and was devel-
oped around the same time. An example of the LOOJ translation of type
casts and instanceof expressions can be found in Chapter 3.

2.7 PolyJ

Myers et al.’s PolyJ [MBL97] is another proposal that adds F-bounded para-
metric polymorphism to Java. This approach is based on where clauses,
which bound type parameters by specifying structural requirements rather
than by using by-name extension requirements. The concept of where

clauses was first introduced in the CLU language [LSAS77].
For example, suppose we write the following GJ code:
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interface Comparable<T> {

int compareTo(T other);

}

class A<T implements Comparable<T>> {

...

}

In PolyJ this code would be represented as:

class A[T]

where T { int compareTo(T other); }

{

...

}

Thus rather than specifying that the type parameter T implements a specific
interface or extends a specific class, a where clause is inserted that merely
requires the type parameter to have the given public methods.

There are some advantages to having structural requirements as opposed
to by-name extension requirements. The standard argument given in sup-
port of where clauses is the following. Suppose there exist a number of
classes, all with similar functionality, but that do not implement a specific
interface for whatever reason. Rather than creating a new interface and
modifying all those classes to implement the interface, it would be easier to
retrofit the parameterized class to allow it to be instantiated with the older,
existing code.

We believe that the problems associated with structural type bounding
outweight this advantage. There are three major problems with bounding
a type parameter with structural requirements rather than with by-name
extension. The first is that it adds a new concept to Java. The rest of
the proposals use extends or implements so as to make it easier for Java
programmers to catch on to the new concept of parametric polymorphism.

The second disadvantage, though rare in practice, is accidental confor-
mance. The example most often given is that of the artist and the cowboy.

class Artist() {

public void draw() { ... }

}

class Cowboy {

public void draw() { ... }

}

class ArtSchool[T]
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where T { void draw(); }

{ ... }

In this situation, an ArtSchool class can be instantiated with a Cowboy as
well as with an Artist, which is not desirable behavior.

This leads to our third problem. Constructs like where clauses can lead
to messy compatibility problems as they allow for a rather cheap way out of a
bad project design. A complex set of components with similar functionality
really should have a single name and explicit design specification, such as
an interface, associated with it. If no such interface is created, then any one
of the individual classes in this set of components could change the name of
a specific method, potentially disallowing it to instantiate type parameters
using where clauses that still use the old name of the method.

For example, suppose we create the following class:

class University {

...

ArtSchool[Artist] artSchool;

...

}

Now, suppose that a month later the person responsible for implementing
the Artist class decides that it is more accurate to name the draw() method
sketch(), and does so. This change renders University non-executable.
By having classes that share a common functionality implement a common
interface, we are guaranteeing that this problem does not occur.

Aside from using where clauses instead of by-name extension, PolyJ does
not introduce additional expressiveness beyond what the other proposals
offer. For the reasons given above, we feel that where clauses are not the
best way to add parametric polymorphism to Java and therefore will restrict
ourselves to a source language that is more consistent with Java’s use of by-
name extension.

2.7.1 Enhancing the JVM for Speed

There are two implementations available for PolyJ. The first does not re-
quire any modification to the existing JVM specification and suffers from
many of the same complications as GJ. The second is the only design that
calls for a fairly large change to the JVM specification. It modifies the byte-
code language, class loader, bytecode verifier, and runtime representation of
classes to support F-bounded parametric polymorphism in the JVM. They
found up to a 17% speedup in some cases, with only a 2% slowdown in some
situations not using parametric polymorphism, but contend that the minor
performance hit taken in those situations was due more to a lack of opti-
mization than to an inherent performance overhead associated with their
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design [MBL97]. Thus PolyJ can be extremely fast with support in the VM,
which lends strong support to our argument that support for parametric
polymorphism should be included in the JVM’s type system.

The PolyJ VM fits much of our initial criteria, although it does not
support exact types, ThisType, or ThisClass. The details of their JVM
modification are beyond the scope of this thesis, but it is sufficient to note
that one of our explicit goals, in contrast to their design, is to limit our
modification of the JVM to loading and linking processes while avoiding
changes to other areas, such as the bytecode language or run-time class
representation, that affect complex systems in the JVM, such as garbage
collection and JIT compilation.

2.8 LOOJ

LOOJ, an extension to Java developed at Williams College by Kim Bruce
and his students, has F-bounded polymorphism, ThisType, ThisClass, and
exact types. It therefore boasts the most expressive type system of any of
the proposed extensions thus far.

At the moment, LOOJ runs without JVM modification using a very
similar approach to that taken by LM (it uses erasure for translation and
instance variables to keep track of polymorphic instantiation specifics) and
its performance suffers accordingly. During translation, the instance variable
inserted into polymorphic classes is a PolyClass object. The PolyClass

class contains much of the code used by LOOJ at run time to perform
instanceof and checkcast operations with polymorphic types.

LOOJ’s language extensions, type rules, and implementation are in-
cluded in future chapters, so are not presented here. It is the purpose of this
thesis to create a simple virtual machine modification that allows for LOOJ
code to be run more efficiently that it is now.

2.9 Summary: More Specific Goals

After considering all the major proposals that add parametric polymorphism
to Java, we see that the only extensions bringing full first class parametric
polymorphism to Java without modifying the JVM are NextGen, PolyJ,
LM, and LOOJ, all of which suffer both space and speed hits at run time.
Furthermore, the PolyJ JVM modification has shown us that a JVM with
an enhanced type system can run parameterized code very efficiently, expe-
riencing a speedup of up to 17% in some cases. Unfortunately, the PolyJ
JVM modification uses structural requirements for parametric types and
does include support for exact types, ThisType, or ThisClass. We there-
fore do not consider its type system a sufficient enough improvement over
the current JVM’s to warrant a new JVM specification.
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We propose a JVM modification that contains support for the type sys-
tem in LOOJ, which includes exact types, ThisType, and ThisClass. This
differs from PolyJ’s JVM extension because it supports by-name and not
structural subtyping, as well as additional LOOJ language features.

The remainder of this thesis discusses the design decisions and imple-
mentation details of our proposed modification to the JVM specification.



Chapter 3

The Java Virtual Machine

The average man does not want to be free.
He simply wants to be safe.

– H. L. Mencken

J
ava’s security is one of the major reasons behind its success. Its strict
type system allows a number of errors to be caught at compile time.
The fact that memory is managed at run time by a garbage collector

means that developers do not have to spend precious hours tracking down
elusive memory leaks. The so-called “sandbox” execution model lets un-
trusted Applets run locally without the fear of them doing evil things such
as modifying the contents of a hard drive. Java 2 even has a flexible run-time
SecurityManager class that allows programs to create very specific security
profiles.

The Java bytecode verifier is the first line of defense a JVM uses to
detect potentially unsafe, corrupted, or malicious code. Any bytecode that
passes verification is guaranteed to be “safe” to execute. What exactly the
term “safe” implies will be described in more detail in section 3.2. Safety
is guaranteed, in part, by a link-time static type check performed by the
verifier, so it is necessarily impacted by any modification to the JVM’s type
system. In fact, our goal is to limit our modification to the class loader and
verifier so that the run-time system, including any variety of JIT compilers
and garbage collectors, remains untouched.

This chapter first gives a quick overview of the design of the JVM, includ-
ing a description of the purpose and design of the bytecode verifier. A crash
course in how the verifier performs type checking follows the specification
for the existing verification algorithm. We then explain the design aspects of
GJ and LOOJ, including excess type casts and bridge methods, that hinder
performance but are necessary in allowing their compiled bytecode to pass

28
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verification.

3.1 An Overview of the JVM

This section offers a brief overview of the design of the JVM, highlighting
only those aspects relevant to our project. For a complete description of the
JVM specification, see [LY99].

3.1.1 The Class File

The JVM is an abstract specification for a machine that runs Java bytecode
found in Java class files. A Java class file includes one or more Java class
definitions.

Each class definition contains a list of method definitions. Each method
definition includes flags for the method (such as private, synchronized, etc.),
a set of attributes (annotations containing extra information for the virtual
machine), and the method’s executable bytecode.

There is an analogous list of field (i.e. static or non-static variable)
definitions, containing both flags and attributes for each field.

Each class definition also includes a constant pool containing much of
the class’s data. During execution, the bytecode frequently references the
data in the constant pool. For example, a method invocation such as1:

invokevirtual A/foo()V

is represented in the bytecode by a single byte for the invokevirtual in-
struction and a second byte that is an index into the constant pool contain-
ing a string representing the method’s signature. This string is then used
to find the actual method in memory for execution. Thus the constant pool
contains all strings for method signatures, referenced classes, etc., which are
used at run time.

3.1.2 Class Loading: Seniors Policy

A familiarity with the basic process of class loading is necessary for the
discussion on building the LOOJ type hierarchy presented in Chapter 5.
Class loading is most easily explained with a quick example.

class A { ... }

interface I { ... }

class B extends A implements I { ... }

1The JVML syntax used in this thesis is that accepted by the Jasmin Java Assembler,
which is the most popular Java bytecode assembler.
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When B is loaded, it causes both A and I to be loaded. If the VM cannot
find either of those class files, a ClassNotFoundException is thrown and
the loading/processing of class B is terminated.

Furthermore, A must be linked before B, as linking a class (i.e. preparing
it for actual use) requires verification. Thus even though the class B might
be the class that is immediately needed, loading it requires the entire type
hierarchy below it to be loaded and processed as well.

The important consequence of this is that A is verified before B.

3.1.3 The Execution Model and Java Bytecode

The term bytecode refers to the actual array of bytes in memory (retrieved
from the class file) that is executed when a specific method is called. The
bytecode itself is written in a machine language called the Java Virtual
Machine Language, or JVML. Each method has its own bytecode, so any
analysis performed on a Java program is done on a by-method basis. Because
of this, the verifier performs data-flow analysis on each method individually,
as described in section 3.2. This subsection describes the major aspects
of the Java execution model that are relevant to the verifier’s design. A
detailed description of the JVML or run-time environment is beyond the
scope of this thesis.

A JVM thread executes one method at a time. The thread maintains
a stack of activation records for method calls. This same stack is used by
the method at run time for computations and is referred to as the operand

stack in this context.
There are no registers in the JVM. Instead, a method can request any

number (less than 65536) of spaces for local variables, which are stored in
the local variable array. To remain consistent with its stack-based design,
the value stored in a local variable cannot be manipulated directly. Instead,
its value must be pushed onto the operand stack, manipulated, and popped
off the stack and copied into the variable space again.

Local variables at the JVM level do not necessarily coincide with local
variables at the source code level. Consider the following example.

void m() {

int x = 5;

x + 1;

float y = 6.0;

y + 0.1;

}

In this case, it might make sense to have the method ask for space for only
one local variable. In the first half of the method it could be used to hold
int values, while in the second half it could be used to hold float values.
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Alternatively, this method could be compiled so that the operand stack is
used exclusively and data is never stored into any local variables.

Every non-static method has at least one local variable which is a refer-
ence to the object that is the method receiver. One can think of this object
reference as being akin to Java’s this keyword. Parameters to a method
are also stored in local variable spaces. Thus each method’s declared local
variable size must be at least large enough to hold all values for its param-
eters.

An object’s instance variables are stored with the rest of its data in the
heap. Like local variables, their data can only be manipulated through the
operand stack.

Thus the operand stack is the only memory that is used directly by
the JVM during execution for any type of calculation, method invocation,
or object manipulation, while the local variable spaces are used only for
storing intermediate values.

A method’s header specifies the maximum number of bytes on the stack
that the method will ever use and the maximum number of bytes needed
for the local variables. The former value clearly does not include space that
might be needed for further activation records on the stack in the case of
method invocations. Thus a method executes in the finite amount of space
it requests. In fact, a method that passes verification is guaranteed not to
exceed its requested amount of space. There is no requirement that the stack
be empty when the method returns, as is the case for some other stack-based
languages.

3.1.4 Some Examples and Deconstructing Signatures

To make the reader more comfortable with the Java execution model be-
fore continuing, this subsection includes some Java code, the corresponding
translation to bytecode, and an example of what we will see later to be code
that fails verification.

The following discussion also includes a deconstruction of how type sig-
natures are represented in the class file, a cursory understanding of which is
necessary to understand the LOOJ type signatures presented in subsection
4.1.

public class Foo {

public String getFoo() { return "Foo"; }

public static void main(String args[]) {

Foo foo = new Foo();

}

}

Translates to:
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.source Foo.java

.class public Foo

.super java/lang/Object

.method public <init>()V

.limit stack 1

.limit locals 1

aload_0

invokespecial java/lang/Object/<init>()V

return

.end method

.method public getFoo()Ljava/lang/String;

.limit stack 1

.limit locals 1

ldc "Foo"

areturn

.end method

.method public static main([Ljava/lang/String;)V

.limit stack 2

.limit locals 2

new Foo

dup

invokespecial Foo/<init>()V

astore_1

return

.end method

As indicated by the .limit statements in the translation from Java to
JVML, the compiler has inserted space limits into every method.

Suppose we were to execute the main method. The execution would
proceed as follows:

1. new Foo pushes a reference to an object of type Foo onto the top of
the stack. Memory is allocated for our new Foo, but the object is
uninitialized, meaning that any attempt to use it results in an error.

2. dup duplicates the reference on the top of the stack.

3. invokespecial Foo/<init>()V looks up a method called “<init>”
with type signature “()V” in a class called “Foo”. The invocation pops
the reference off the top of the stack in the process and initializes the
memory it points to by calling the constructor it found in class “Foo”.
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4. astore 1 pops the value off the top of the stack and stores it into local
variable 1.

5. return returns from the method call.

This execution never exceeds its declared operand stack limit of 2, nor does
it exceed its declared number of local variables. If instead main were as
follows:

.method public static main([Ljava/lang/String;)V

.limit stack 1

.limit locals 2

new Foo

dup

invokespecial Foo/<init>()V

return

.end method

then it would clearly attempt to use more operand stack space than it has
requested. Pass 3 of verification would catch this problem, as we shall see
in the following section.

Method Type Signatures

The following is a brief explanation of method type signatures. Consider the
method main. Its type signature is main([Ljava/lang/String;)V. Between
the ’(’ and ’)’ is the list of types of method parameters. After the ’)’ is the
return type of the method. [Ljava/lang/String; refers to an array (hence
the ’[’) of String objects, where String can be found in the package java.lang2.
A class name starts with ’L’ and ends with a semicolon.

As a further example of the type signature syntax, the type signature
for the following method:

int add(int x, int y) {...}

is add(II)I, where I refers to integer.
The signature of a method is used at runtime to call it. In the example

above, when the method getFoo() is called from another class the JVM
uses its full type signature to look it up in memory for execution.

3.2 The Bytecode Verifier

Code passed by the bytecode verifier is basically “safe” to execute by a
virtual machine. This section elaborates what level of safety is guaranteed

2For historical reasons the ’.’ used in the Java language is translated to the ’/’ of the
JVML.
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of a class that passes verification. It also points out where type checking
takes place in the current bytecode verification algorithm.

According to the JVM specification, there are four passes of verifica-
tion. Although only pass 3 involves type checking, brief descriptions of all
four are included here so that readers unfamiliar with Java Class verifica-
tion understand fully what conditions are satisfied by bytecode that passes
verification.

3.2.1 Pass 1: Classfile Integrity

The first pass occurs during the loading of a class’s data from a class file into
memory. It simply ensures that the file in question is a properly formatted
class file. This check is typically performed by the class loader, although its
function is included in what the JVM specification calls “verification”.

3.2.2 Pass 2: Static Constraint Checks

The second pass ensures that the constant pool is properly organized, which
is more thorough than simply checking that it is formatted correctly. There
are some constant pool entries that refer to other entries in the pool and this
pass checks that they refer to entries of the appropriate type. For example,
a NameAndType entry consists of two bytes that refer to the indices for two
Utf8 formatted strings found elsewhere in the pool. If one of the indices
refers to the middle of another entry or to an entry that is not a Utf8 string
constant, this pass will catch that error.

It also checks that final classes are not extended and final methods are
not overridden, that every class except Object has a superclass, that all
method references have a valid type descriptor, that abstract methods have
no code, and other static constraints that can be checked without looking
at a method’s actual bytecode.

The first two passes are not affected by our modification to the JVM
specification.

3.2.3 Pass 3: Bytecode Verification

Pass 3 is commonly referred to as Java bytecode verification. This sub-
section includes a list of the checks performed during pass 3 as well as the
(almost) complete specification for the bytecode verification algorithm. It is
included to illustrate where in the algorithm type checking occurs, which is
the aspect of verification of interest in our project.

This pass uses a simple data flow analysis algorithm on the bytecode of
an individual method (that is, pass 3 is performed on a by-method basis)
to check, at each instruction, regardless of what code path is taken to reach
the instruction, that (the following is excerpted from [LY99, 142]):
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• The operand stack is always the same size and contains the same type
of values.

• No local variable is accessed unless it is known to contain a value of
an appropriate type.

• Methods are invoked with the appropriate arguments.

• Fields are assigned only using values of appropriate types.

• All opcodes have appropriate type arguments on the operand stack
and in the local variable array.

During the data flow analysis, the following conditions are also checked
(excerpted from [LY99, 143-144].):

• Branches must be within the bounds of the code array for the method.

• The targets of all control-flow instructions are each the start of an
instruction. In the case of a wide instruction, the wide opcode is
considered the start of the instruction, and the opcode giving the op-
eration modified by that wide instruction is not considered to start an
instruction. Branches into the middle of an instruction are disallowed.

• No instruction can access or modify a local variable at an index greater
than or equal to the number of local variables that its method indicates
it allows.

• All references to the constant pool must be to an entry of the appro-
priate type.

• The code does not end in the middle of an instruction.

• Execution cannot fall off the end of the code.

• For each exception handler, the starting and ending point of the code
protected by the handler must be at the beginning of an instruction
or, in the case of ending point, immediately past the end of the code.
The starting point must be before the ending point. The exception
handler code must start at a valid instruction, and it may not start at
an opcode being modified by the wide instruction.

Upon reviewing this list, we see that the only (non-logical) errors not caught
statically by the verifier include events such as the following:

• addressing a null pointer,

• indexing an array beyond its bounds,

• trying to cast an object to an inappropriate type,
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• division by zero,

• etc.

These are managed by dynamic checks. For example, any time an index is
made into an array, a bound check is made. Due to the Halting Problem
we cannot eliminate many of these run-time errors with static bytecode
analysis. However, it is the purpose of this thesis to decrease the number of
necessary checked type casts at run time by eliminating the need for casts
that are guaranteed to succeed.

The Data Flow Analysis Algorithm

Pass 3 performs these checks through a simple data flow analysis. To fa-
miliarize the reader with the algorithm, its specification is included here.
A familiarity with the algorithm is necessary in order to understand where
and when type checking takes place in the bytecode verifier.

At each instruction, a record is kept of the size and contents (i.e. types)
of the operand stack and of the type stored in each local variable. When
the data analyzer is initialized, all of the types are set to unstable and the
“changed” bit for the first instruction of the method is set to true. Then
the analyzer is run as follows (excerpted from [LY99, 144-146].):

1. Select a VM instruction whose ”changed” bit is set. If no instruc-
tion remains whose “changed” bit is set, the method has successfully
been verified. Otherwise, turn off the “changed” bit of the selected
instruction.

2. Model the effect of the instruction on the operand stack and local
variable array by doing the following:

• If the instruction uses values from the operand stack, ensure that
there are a sufficient number of values on the stack and that the
top values on the stack are of an appropriate type. Otherwise,
verification fails.

• If the instruction uses a local variable, ensure that the specified
local variable contains a value of the appropriate type. Otherwise,
verification fails.

• If the instruction pushes values onto the operand stack, ensure
that there is sufficient room on the operand stack for the new val-
ues. Add the indicated types to the top of the modeled operand
stack.

• If the instruction modifies a local variable, record that the local
variable now contains the new type.
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3. Determine the instructions that can follow the current instruction.
Successor instructions can be one of the following:

• The next instruction, if the current instruction is not an uncon-
ditional control transfer instruction (for instance goto, return,
or athrow). Verification fails if it is possible to “fall off” the last
instruction of the method.

• The target(s) of a conditional or unconditional branch or switch.

• Any exception handlers for this instruction.

4. Merge the state of the operand stack and local variable array at the end
of the execution of the current instruction into each of the successor
instructions. In the special case of control transfer to an exception
handler, the operand stack is set to contain a single object of the
exception type indicated by the exception handler information.

• If this is the first time the successor instruction has been visited,
record that the operand stack and local variable values calculated
in steps 2 and 3 are the state of the operand stack and local
variable array prior to executing the successor instruction. Set
the “changed” bit for the successor instruction.

• If the successor instruction has been seen before, then merge the
operand stack and local variable values calculated in steps 2 and
3 into the values already there. Set the “changed” bit if there is
any modification to the values.

To merge two operand stacks, the number of values on each stack
must be identical. The types of values on the stacks must also
be identical, except that differently typed reference values may
appear at corresponding places on the two stacks. In this case, the
merged operand stack contains a reference to an instance of the
first common superclass of the two types. Such a reference type
always exists because Object is a superclass of all class, array,
and interface types. If the operand stacks cannot be merged,
verification of the method fails.

(Merging two sets of local variables is similar, except that incom-
patible types are replaced with the type unstable and thus do not
immediately cause verification to fail).

5. Continue at step 1.

Different implementations of the verifier do not necessarily follow this speci-
fication exactly. For instance, instead of doing analysis on a per-instruction
basis, most do the data flow analysis on the level of basic blocks. Fur-
thermore, when merging two different reference types some verifiers create



CHAPTER 3. THE JAVA VIRTUAL MACHINE 38

a set of possible merged types, including the superclass and all interfaces
implemented by both types. Sun’s verifier does not use this perhaps more
accurate approach.

An Example

To illustrate the process of verification, the following is a step-by-step ex-
ample of a simple method that fails bytecode verification in a merging step.
Recall that, for verification purposes, values of data are not saved (indeed,
they are not even available) so only the types of values are stored in the
simulated operand stack and local variable array.

.class A

.super java/lang/Object

.method public add(II)I

.limit stack 2

.limit locals 3

iload_1

iload_2

iadd

JumpLabel:

pop

fconst_0

goto JumpLabel

ireturn

.end method

The reader may become nervous when viewing the infinite loop above. Be-
cause of the Halting Problem the verifier cannot check for infinite loops,
and as they make it easy to create verification examples one is used here.
Recall that verification passes once a stable state has been reached (mean-
ing that no instruction has its changed bit set). According to the algorithm
specification, the merger of two operand stacks can only revise the type of a
reference by finding the first common superclass of two disagreeing reference
types. Therefore, because class hierarchies are finite, at some point a stable
state will be reached, so the verifier itself will not check this code infinitely.

At the beginning of the method, the operand stack and local variable
array contain the following types.

Operand Stack Locals

------------------------------------------- (0)

unstable A

unstable int

int
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Notice that the first local variable contains a reference to the type of object
that receives the method call. This reference is akin to Java’s this keyword.
Also, for the purposes of demonstration both the local variable array and the
simulated operand stack are indexed from the top down. Thus the top-most
values have the lowest indices.

The algorithm then simulates execution. iload N pushes an int value
stored in variable number N onto the operand stack. Obviously, if variable N

does not contain a value of type int, then verification of the method fails.
After the two iload statements we get:

Operand Stack Locals

------------------------------------------- (1)

int A

int int

int

add, which pops off two integer values, adds them together, and pushes the
integer result back onto the operand stack, yields:

Operand Stack Locals

------------------------------------------- (2)

int A

unstable int

int

It is important to remember that, during verification, each instruction has
an operand stack and local variable array associated with it that is used for
merging operations. Thus this last operand stack and local array is associ-
ated with the pop instruction. That is, when any other code path is taken
to reach pop, the operand stack and local variables from that path must
be compatible with the above operand stack and local array as described in
step 4 of the data flow analysis specification.

To continue our simulation, pop yields:

Operand Stack Locals

------------------------------------------- (3)

unstable A

unstable int

int

fconst 0 loads the floating point constant 0 onto the stack:

Operand Stack Locals

------------------------------------------- (4)

float A

unstable int

int
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The goto instruction is then processed, which leads to a merge operation
with the already existing operand stack and local variable array associated
with the pop instruction, shown in (2) above. Unfortunately, the top of
the stack in (4) is not compatible with that of (2), as one control path
yields an int value in stack position 0 while the other yields a float. Thus
verification would fail when attempting to merge these two states.

This example was provided simply to give a feel for the workings of
the algorithm that is to be modified. However, it is easy to see how type
checking of merges would extend to reference types, which is what we are
primarily concerned with. Later in this chapter there is an example of the
algorithm being applied to reference types.

3.2.4 Pass 4: Lazy Loading

Pass 4 is only separate from pass 3 for efficiency reasons and does not really
affect type checking. It essentially allows the VM to defer loading classes
referred to by the class being verified (unless loading them is absolutely
necessary for type checking during bytecode verification) until those classes
are needed at execution-time. Thus it is not strictly necessary for a VM to
separate pass 4 from pass 3, but the specification allows for a lazy loading of
referenced classes to delay errors associated with attempts to load missing
classes.

One example3 of when lazy loading is allowed is if, during bytecode
verification, a method invocation is processed where the method returns
something of type A and the value returned is assigned immediately after-
wards into an instance variable of type A. The bytecode being verified may
even access instance variables in an object of type A without causing the
class to be loaded. Class A is not loaded until the method call instruction
is executed at run time, at which point pass 4 checks that the currently
executing object has permission to access A and that any fields it references
in A exist and are of the correct type.

Pass 4 is not affected by our modification to the JVM as it does not, in
principle, have to be separated from pass 3.

3.3 Type Checking and the Verifier

Since we are modifying the JVM’s type system, we potentially need to mod-
ify the above verification algorithm anywhere type checking occurs. In this
section we first discuss where type checking takes place in the verifier. We
then describe the current type checking algorithm and show an example of
pass 3 verification with type checking.

3This example is taken from [LY99, 142].
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3.3.1 Type Checking Circumstances

Type checking occurs in two kinds of circumstances: merge operations and
non-merge operations. In the former case we ask the question: do types α

and β have a common supertype? In the latter we ask: can an β be used in
place of an α or not? This subsection shows some examples of non-merge
operations that require type checking.

Recall that a merge operation is performed any time more than one con-
trol path exists to get between two instructions. Aside from merge opera-
tions, type checking occurs with the use of a number of JVML instructions.
One example of this is the aastore instruction, which stores a reference
value in an array. According to JVML type rules, the value to be stored
must be an extension of the type the array stores.

Another place type checking occurs is at method invocations. The types
on top of the stack are checked against the types of the method parameters.
If the types on the operand stack are incompatible with those expected by
the method, verification fails.

Type checking is also needed any time an instance variable is written
to. Recall that to manipulate an instance variable, its value has to be
pushed onto the stack from its location in memory (which would be with
its containing object in the heap), manipulated, and then popped back into
its location in memory. The verifier guarantees that any value stored in
instance variables will be of the correct type.

These are just some examples of where type checking takes place in
the verifier. There are others as well. In most implementations they all
consult the same methods to answer the type checking questions so this set
of methods becomes the focus of our implementation.

We now describe the rules for type checking in the virtual machine more
concretely.

3.3.2 Type Checking 101

Java types include arrays, primitives, classes, and interfaces. Aside from
primitive types, these are all reference types. At run time, a class or interface
is represented in memory by an instance of class Class. A Class object has
information about a class such as its superclass, the list of interfaces it
implements, a method invocation table, its static variables, etc.

For merge operations, determining the first common superclass of two
classes is therefore trivial. One simply has to follow the superclass links
from both classes until a common one is reached. Finding the first common
superinterface of two interfaces is analogous. However, multiple interface
inheritance may cause the meaning of of “first common superinterface” to
be ambiguous. To determine the set of interfaces implemented by both of two
classes, we simply find common superinterfaces of the interfaces implemented
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by one class and those implemented by another class.
For non-merge operations, we are asking a slightly easier question: can

type β be used in place of type α? In this case, we simply search for α in
β’s type hierarchy. If found, the answer is yes.

The basic type checking rule is therefore:

To check if type β can be used where the type α is expected,
one simply has to follow β’s supertype hierarchy, including the
hierarchies of those interfaces implemented by β, until either α

is found or the entire hierarchy is exhausted. In the latter case,
β cannot be used where an α was needed.

A slightly different rule exists for arrays.

To check if an array type β can be used where the type α is
expected, check that the type of object stored in β is an extension
of the type stored in α. This process may repeat several times
in the case of multidimensional arrays, but will eventually come
to two situations. The first is that the two arrays are of different
dimensions, in which case they are not compatible. The second is
that the algorithm returns the result of the base case operation,
which is the standard type check described above.

Thus type checking of reference types relies heavily on the type hierarchy.

3.3.3 Representing the Type Hierarchy at Run Time

All the classes and interfaces currently in the JVM can be accessed through
a hashtable, where an entry’s key is usually its full type signature, though
it could also be the class’s package and name. The choice is up to imple-
mentors, and there are likely other effective key systems as well, though any
system must depend on the class’s package and name.

For example, the full type signature of class String is:

Ljava/lang/String;

while its package and name is just java/lang/String.
Array types are usually accessed through a second hashtable, where the

key is also related to its type signature. For example, the type signature of
an array of arrays of String is [[Ljava/lang/String;.

We will use the term type hierarchy to refer to the tree-like structure
linking classes to superclasses, superinterfaces, and implemented interfaces.
The class pool or class hashtable refers to the hashtable storing all classes
at run time, where the key/value pair is the type signature and a reference
to the class object containing the class’s run-time data.

Consider the following set of classes and interfaces:
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Object

Store

StoreInterface GrainSiloInterface

GrainSilo

Figure 3.1: A graphical representation of a simple Java type hierarchy.

public interface StoreInterface {

public void setValue(Object value);

public Object setValue();

}

public interface GrainSiloInterface {

public void setValue(Grain value);

public Grain getValue();

}

public class Store implements StoreInterface { ... }

public class GrainSilo

extends Store

implements GrainSiloInterface

{ ... }

Its type hierarchy is given in figure 3.1. When searching the hierarchy for
type checking, the links are followed from the bottom up.

3.3.4 Building the Hierarchy

A class is inserted into the class hashtable as it is loaded from its class
file into memory. If the class’s superclass, superinterface, or implemented
interface is not already in the hierarchy, the the missing supertype must be
loaded from memory for the original class to become usable.
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As an illustration of this system, consider our Store example.

class Execute {

public static void main(String args[]) {

GrainSilo g = new GrainSilo();

g.setValue(new Grain());

}

}

Suppose we were to execute the Execute class. When the JVM is first
loaded, a number of supporting classes are automatically loaded from class li-
braries into the type hierarchy, including various error and exception classes,
class loaders, I/O classes for class loading, the class Class, Object, etc.

After loading these classes, the Execute class file is read and its class
data is inserted into the class pool. Since it implements no interfaces and its
superclass is Object, which has already been loaded, no other class loading
occurs.

During verification the main() method’s bytecode is analyzed.

.method public static main([Ljava/lang/String;)V

.limit stack 3

.limit locals 2

new GrainSilo

dup

invokespecial GrainSilo/<init>()V

astore_1

aload_1

new Grain

dup

invokespecial Grain/<init>()V

invokevirtual GrainSilo/setValue(LGrain;)V

return

.end method

In order to push the type of GrainSilo onto the simulated operand stack,
we lookup its Class object in the class pool.

This brings us to an important point. A reference to the Class object
for a class (or a data structure containing a reference to the Class object)
is used to represent a type on the simulated operand stack. This gives us
easy access to the class’s hierarchy, instance variable type signatures, and
method type signatures for type checking.

To continue with our example, we cannot yet push a pointer to the
Class object representing GrainSilo during verification onto the top of
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the simulated operand stack because GrainSilo has not been loaded. So
GrainSilo is loaded, which causes its superclass Store to be loaded and
added to the hierarchy, and so on.

Thus we see that, currently, the entire type hierarchy of Java is built on
the fly.

3.3.5 Simple Example: Verification with Reference Types

To illustrate the process of bytecode verification with reference types, the
following is a step-by-step example of a simple method that passes verifi-
cation. The method does not actually come from any actual Java source
and was written specifically as a simple example of how reference types are
merged during bytecode verification. In this example, A is just some random
class, so [LA; is the type signature for an array of A.

.class Foo

.super java/lang/Object

.method public foo(LA;[LA;)V

.limit stack 1

.limit locals 3

aload_2

JumpLabel:

pop

aload_1

goto JumpLabel

return

.end method

At the beginning of the method, the type values on the simulated operand
stack are initialized with unstable and the types in the local variable ar-
ray are initialized with the this reference and the types of the method’s
parameters.

Operand Stack Locals

------------------------------------------- (0)

unstable Foo

A

[LA;

The algorithm then simulates execution. The aload n instructions load an
object reference from local variable number n.

Operand Stack Locals

------------------------------------------- (1)

[LA; Foo
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A

[LA;

Thus the state in (1) is associated with the pop instruction. After pop and
aload 1 we have:

Operand Stack Locals

------------------------------------------- (2)

A Foo

A

[LA;

Now, when we jump to the pop instruction again, we must merge the operand
stacks in (1) and (2). To do this, we find the first common superclass of
[LA; and LA;. As one is an array and the other is not, the first common
superclass of both types is Object, so after merging we get:

Operand Stack Locals

------------------------------------------- (3)

Object Foo

A

[LA;

This is the stable state for the pop instruction during verification, as can be
seen if the algorithm is applied until pop is reached again.

3.4 Catering to the Verifier

Keeping the framework described in the last sections in mind, and remem-
bering that the JVM specification does not allow for the run-time represen-
tation of polymorphic types, we can now analyze how GJ and LOOJ take
pains to cater to the verifier. Both insert “stupid” type casts that allow the
verifier to properly type check bytecode. We call the these inserted type
casts “stupid” because they are guaranteed to succeed, given the seman-
tics of the source language. They also use bridge methods to ensure that
dynamic method binding works as expected.

Flat Types

For the purposes of our analysis, the term GJ type refers to a type that
exists in GJ but not in standard Java. Similarly, the term LOOJ type

refers to a type that exists in LOOJ but not in standard Java. Most GJ
types are LOOJ types, and many GJ types are LOOJ types.

One GJ type that is not a LOOJ type is the flat type of a polymorphic
type. For a polymorphic type, such as Store<T>, the name Store is called
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the flat name or flat type so that two distinct instantiations of Store<T>
have the same flat type.

GJ allows flat types to be used in the source language because all instan-
tiations of a polymorphic type are erased to the flat type during translation
anyway. LOOJ does not allow flat types to be used in the source language
because it treats polymorphic types as first class at run time through the use
of its PolyClass instance variables. The reader should keep this in mind for
the description of the LOOJVM type checking system presented in Chapter
5.

3.4.1 GJ: Excess Run-time Costs

This subsection describes the two major run-time costs suffered by GJ.
These costs are stupid type casts, which exist solely to cater to the verifier’s
type checking demands, and bridge methods, which exist to allow dynamic
method binding to function as one would expect. Both incur run-time costs
that our modification does not.

Stupid Type Casts

The first run-time cost is the insertion of “stupid” type casts that are known
to always succeed. These casts exist exclusively to satisfy the verifier and
are inserted during the compilation step called erasure. In this step, GJ-
specific type information is erased and replaced by bounds and standard Java
types during translation to bytecode. For example, consider the following
GJ classes:

class Store<T> {

protected T value;

public T getValue() { return value; }

public void setValue(T value) {

this.value = value;

}

}

class Foo {

public static void main(String args[]) {

Store<String> s = new Store<String>();

s.setValue(new String(‘‘Foo’’));

String t = s.getValue();

}

}

This is clearly type safe. However, because T cannot be stored at run time in
the current VM architecture, GJ erases GJ-specific type information and in-
serts type casts that are guaranteed to succeed. During the translation from
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GJ source to Java bytecode, the GJ compiler translates (via erasure) the GJ
syntax tree to correspond to the following, legal Java source. When we refer
to “translated” or “erased” source, we are referring to this intermediate code
that is eventually translated into JVML.

class Store {

protected Object value;

public Object getValue() { return value; }

public void setValue(Object value) {

this.value = value;

}

}

class Foo {

public static void main(String args[]) {

Store s = new Store();

s.setValue(new String(‘‘Foo’’));

// notice the extra checked type cast

String t = (String)s.getValue();

}

}

The reason the type cast in that last line is necessary is because at run
time there is no representation for the type Store<String>. The JVM only
contains the class Store, which has a field of type Object due to the bound
of T being Object (implicitly as no bound was declared).

Although this is a simple example, there are many programs that make
heavy usage of “generic” data structures that, in Java, necessarily store
values of type Object, which undergo type casts whenever they are retrieved
from the structure. Individually a checked type cast is not that expensive
but they can add up.

Thus one thing we would like our modified verifier to do is pass code like
the above without the unnecessary type cast to String on the last line, yet
still catch type errors.

Bridge Methods

Problems arise in GJ when the bound of a type parameter is constrained in
a subclass of a polymorphic class. Consider the following example:

class Store<T> {

protected T value;

public T getValue() { return value; }

public void setValue(T value) {

this.value = value;
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}

}

class GrainSilo<T extends Grain> extends Store<T> {

protected int bushelsStored;

public GrainSilo() { bushelsStored = 0; }

public void setValue(T value) {

bushelsStored++;

this.value = value;

}

}

GrainSilo inherits the instance variable value as well as the methods
getValue() and setValue(). However, because the bound of type param-
eter T in GrainSilo is Grain and not Object, as it was in the superclass
Store, the erasures of Store and GrainSilo become:

class Store {

protected Object value;

public Object getValue() { return value; }

public void setValue(Object value) {

this.value = value;

}

}

class GrainSilo extends Store {

public void setValue(Grain value) {

bushelsStored++;

this.value = value;

}

}

Thus setValue() is overloaded in GrainSilo and not overridden, as would
be expected for inherited methods. This can lead to run-time type errors
because of Java’s dynamic method invocation. For example:

Store<Grain> store = new GrainSilo<Grain>();

store.setValue(new Grain());

At compile time, the invocation of setValue() would be associated with
the setValue() method in the Store class, which has the type signa-
ture setValue(LGrain;)V. However, at run time we would like to exe-
cute the setValue() method in the GrainSilo class, which would oc-
cur if the method were overridden, as is usually the case. However, be-
cause GrainSilo.setValue() has a different type signature than that which
was statically bound to the method call, when the method of signature
setValue(Ljava/lang/Object;)V is called at run time the only matching
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method in the object store will unfortunately be the setValue() method
of the superclass.

To solve this problem, GJ adds a bridge method. A bridge method
overrides the definition in the superclass and basically forwards the call to
the appropriate version in the subclass. Thus the translation of GrainSilo
becomes:

class GrainSilo {

public void setValue(Grain value) {

bushelsStored++;

this.value = value;

}

/* BRIDGE METHOD */

public void setValue(Object value) {

this.setValue((Grain)value);

}

}

The second method clearly overrides the setValue() method from Store

and ensures that the correct method is called at run time.
Unfortunately, this incurs an additional method call and potentially a

few type casts. Parameters that are polymorphic types must all be cast in
the bridge method body, just as value is cast above. Our modification to
the loader and verifier overcomes this cost, as will be explained in Chapter
5.

3.4.2 LOOJ: Excess Run-time Costs

LOOJ suffers from the same run-time overhead as GJ since it uses type
erasure during translation to JVML with ThisType and ThisClass in ad-
dition to parametric types and type parameters. In fact, ThisType and
ThisClass are essentially type parameters whose bound is constrained in
every subclass. Casts and bridge methods must be inserted as before.

LOOJ has further run-time overhead because the JVM does not sup-
port its language extensions at run time. This extra overhead is due to its
treatment of LOOJ types as first class. LOOJ allows this by inserting an
instance variable of type PolyClass, which was described briefly in section
2.8, into every class that is a LOOJ type (recall that a LOOJ type is any
type in LOOJ that uses its language extensions). During translation, when
an action such as instanceof is performed on one of these special types,
LOOJ translates the simple line into a more complicated set of method calls
that effectively performs the action at run time.

The full details of these translations are beyond the scope of this thesis
and can be found in [Fos01]. It is sufficient to note that, because we are
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avoiding any modification to the Java run-time, we cannot provide more effi-
cient solutions to the problems associated with the treatment of LOOJ types
as first class. For example, checking a cast to a polymorphic type is impos-
sible without the PolyClass instance variable and the more complicated set
of instructions substituted for the simple type cast.

The reader should understand the translation of a type cast to a LOOJ
type as it affects type checking in the verifier.

Store<String> s = (Store<String>)object;

becomes:

Object $synth_1$;

Store s =

((($synth_1$ = object) == NULL)

||

((Store)$synth_1$.$instanceOf$Store(

new PolyClass(String.class)))

? (Store)$synth_1$

: throw new ClassCastException();

Thus the one line cast to a parameterized type gets translated to a more
complicated expression. The following discussion illustrates how the verifier
is affected by this translation.

Verifying LOOJ’s Casts

The LOOJ translation of a cast to a polymorphic instantiation illustrated
above presents an interesting problem for the bytecode verifier. Consider
verifying the LOOJ statement above with the cast to Store<String>. In
pseudo-bytecode, we can write the statement as:

checkcast LStore<Ljava/lang/String;>;

Before the statement, the current simulated operand stack and local variable
array in the verifier would be:

Operand Stack Locals

------------------------------------------- (0)

... @ThisClass

SomeRefType ...

After the statement, we get:

Operand Stack Locals

------------------------------------------- (1)

... @ThisClass

Store<String> ...
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Thus, when simulating verification, the correct LOOJ type would be pushed
onto the operand stack. However, after LOOJ translation the cast is not
represented by a single JVML line, but rather by the complex expression
shown above. Unfortunately, it is not immediately clear when the LOOJ
type should be pushed onto the stack during verification, especially because
erasure has removed all of the LOOJ-specific type information. The solution
to this dilemma will be presented in Chapter 4.

As we will see later, our new type checker will only need some special
cases for LOOJ types that are not simply type parameters or instantiations
of a parameterized type.

3.5 Summary

This chapter explained the aspects of the class file and the JVM run-time
class representation that are relevant to our project. It described the cur-
rent verification algorithm in depth to illustrate where type checking takes
place, as the type checker is the primary focus of our JVM modification. It
then explained how the verifier utilizes the class pool and class hierarchy
to perform type checking. Finally, it explained the current run-time costs
incurred by GJ and by LOOJ for their type system enhancements. These
costs include extra checked run-time type casts and extra method calls that
go through bridge methods.

We almost have enough knowledge to go ahead with our verifier modifi-
cation. However, before a modified verifier can use LOOJ type information
to type check method bytecode during pass 3 of bytecode verification, it
must have available to it the source-level, static LOOJ type information.
Because LOOJ, like GJ, translates to JVML via erasure, its type informa-
tion is lost after compilation to bytecode. The next chapter explains how
class file attributes are used to maintain LOOJ type information from com-
pilation through verification.



Chapter 4

The Signature Attribute

Knowledge is power.

– Sir Francis Bacon

A
s we have shown, LOOJ has a type system containing information
not present in standard Java and that is lost in the translation pro-
cess. One must therefore ask the question: if LOOJ type informa-

tion is thrown out in the translation to JVML, how is separate compilation
with LOOJ types possible? More importantly, how can we get the original
LOOJ type information to the LOOJ bytecode verifier? When verification
occurs at link time, having knowledge of the original LOOJ types isn’t just
powerful, it is necessary.

This chapter explains how the Signature attribute stores LOOJ type
information in class files to allow for separate compilation. It then illustrates
the failure of the current attribute specification to provide adequate infor-
mation for bytecode verification. Finally, it presents a new set of attributes
that allow the LOOJ bytecode verifier to type check bytecode without the
stupid casts and bridge methods shown in the last chapter.

4.1 LOOJ Type Signatures

For the rest of this thesis we need a basic understanding of LOOJ type
signatures. The best way to figure these out is to see some examples. A
formal specification of the type signatures is in [Fos01].

After giving a brief introduction to LOOJ type signatures, the next sec-
tion discusses how they are maintained in the Java class file after compilation
of LOOJ source code.

53
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4.1.1 Polymorphic Types

As you would expect, polymorphic type signatures start with an ’L’, just like
other reference types, which is followed by the class name, then ’<’, then the
list of type parameter types, then ’>;’. For example, the type signature of
Store<String> is:

LStore<Ljava/lang/String;>;

4.1.2 Type Parameters

The type signature for a type parameter is a ’T’ followed by the name of the
type parameter and ending with ’;’. So a type parameter T is TT;. Thus
the type signature of Store<T> is:

LStore<TT;>;

As a fancier example, consider the type Foo<T,W,String>. Its type signa-
ture is:

LFoo<TT;TW;LString;>;

Suppose Store<T> has a method called m() that takes an int, a T, and
another int as parameters and returns an int. Its signature is:

Store/m(ITT;I)I

Notice that ’;’ does not act as a “end of type” delimiter for primitive types.

4.1.3 ThisType and ThisClass

One would expect ThisType and ThisClass representations to be similar to
those of type parameters, as they are essentially specialized type parameters.
However, the type signatures of ThisType and ThisClass provide a little
more information.

ThisType starts with ’M’ and is followed by the complete type signature of
the class that it is in (’M’ comes from MyType in LOOM, a language developed
by Kim Bruce and his students at Williams). ThisClass is similar, but starts
with a ’K’.

Thus a method m() in Store<T> that takes no parameters and returns
something of ThisType has a type signature:

m()MLStore<TT;>;

4.1.4 Exact Types

Just as in the source language, the type signature of an exact type starts
with ’@’ and is followed by a complete type signature. So an instance variable
of exactly ThisType in Store<T> has the signature:

@MLStore<TT;>;
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4.2 The Power of Comments

As any programmer who has spent many wasted hours staring at a col-
league’s source code can attest, comments often contain information essen-
tial to understanding the real meaning of pieces of code. Although a class
file is not human readable, it contains many “comments” that allow com-
pilers and virtual machine implementations to better understand the code
within. These comments are called attributes.

The class file specification allows class definitions, method definitions,
and field definitions to have any number of attributes. Although attributes
can be thought of as comments or annotations in the class file, they are
most often functional. They were initially included in the design to allow
vendor-specific enhancements to the Java language that would not other-
wise affect its overall specification. For example, one could imagine a Java
compiler that includes bytecode analysis in a method attribute that is used
at run-time by an optimizing JIT compiler, saving the JIT compiler the
work of performing analysis for optimization at run-time. There is actually
a small set of attributes that all JVM’s are required to recognize, and any
attribute not in that list should be able to be safely ignored by any JVM
implementation in which it is not recognized.

The only type information of a LOOJ class needed by other classes for
separate compilation are the LOOJ type signatures of the LOOJ class’s
public interface. Implementation details, such as the use of LOOJ language
features in method code, are completely forgotten in the translation to a
Java class file. This loss of LOOJ type information describing the bytecode
itself has required us to create an enhanced attribute specification for use in
method bytecode verification.

GJ and LOOJ use an attribute called the Signature attribute1 to store
non-Java type information in the class file post-translation. Before modifica-
tion, the LOOJ Signature attribute therefore only contains type information
for publicly accessible methods and instance variables that use LOOJ fea-
tures. Thus the erased type of a public method or field is stored in the class
file’s method or field definition, while the LOOJ type, which is not usable
by the JVM, is essentially stored in a comment within the public method
or field definition. The LOOJ compiler then reads the comment in the defi-
nition of the public method or field and treats it as its original (i.e. source
code) statically declared LOOJ type, and not the “actual” Java type used
by the JVM at run-time.

For example, at compile time, a class referencing Store’s setValue()

method would be able see its type signature as:

setValue(TT;)V

1For a full specification of the information stored in the Signature attribute, see [Fos01].
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and not the following version, which is the one actually stored in the class
file and used by the JVML during execution:

setValue(Ljava/lang/Object;)V

4.2.1 Inheritance

The type signature in the Signature attribute for a class is not exactly what
has been presented above as LOOJ type signatures. It starts with type
parameter information, then has the LOOJ signature of the superclass, then
the LOOJ signatures of any implemented interfaces.

For example, the strings stored in Store’s Signature attribute and in
GrainSilo’s Signature attribute would respectively be:

<T:Ljava/lang/Object;>Ljava/lang/Object;

<T:LGrain;>LStore<TT;>;

Thus the bound of each type parameter, the specific LOOJ supertype, and
the specific LOOJ superinterfaces (although there are none in this simple
example) are are present in the current Signature attribute.

Now that we have described the information stored in the Signature
attribute, figure 4.1 is a graphical representation of how information is stored
in the class file. For simplicity, all the information in the constant pool
should be considered to be strings. As described in this subsection, the
inheritance hierarchy of the Store class is encoded in its LOOJ Signature
attribute.

4.3 Limitations of the Signature Attribute

As hinted above, the current Signature attribute does not contain enough
information to allow the bytecode verifier to effectively verify methods using
LOOJ language features. Since the current Signature attribute only contains
information for the type signatures of methods, fields, and classes, type
information erased in the actual bytecode (i.e. that which is actually type
checked by the verifier) during the translation process is actually lost. For
example, the following Java code:

new Store<String>();

would translate to the JVML code:

new Store

dup

invokespecial Store/<init>()V

and, unfortunately, not to the following:
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Store Class File Data

Store class data
Store class name

Constant Pool

Store Signature attribute

Fields

value

name

Signature attribute

Methods

getValue()

Signature

Signature attribute

Bytecode array

getValue()Ljava/lang/Object;

getValue()TT;

<T:Object;>
Ljava/lang/Object;

value

TT;

Store

Figure 4.1: A graphical representation of information stored in a class file.
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new Store<String>

dup

invokespecial Store<String>/<init>()V

which is what we would like during verification. That is, after simulating
this set of instructions in the bytecode verification algorithm, our simulated
operand stack should have a Store<String> on top of it and not simply a
Store. This deficiency clearly prevents us from type checking a great deal
of polymorphic code.

4.4 More Comments!

Without a very generous amount of footnotes, a James Joyce novel, though
written in English, would be incomprehensible to contemporary American
readers (and even with the footnotes can be utterly baffling). The foot-
notes explain nuances in language and historical figures that would have
been recognized by Irish readers at the time of writing 100 years ago but
whose significance has long since been erased from popular knowledge. In
other words, they help explain what Joyce actually meant. The annotations
inserted by the LOOJ compiler act in a very similar manner, but in this
case the nuances in language are erased LOOJ types and not clever turns of
phrase, and the reader is the LOOJ virtual machine. Our “footnotes”, the
attributes, explain to the VM what certain bits of bytecode actually mean
and not what they simply appear to mean.

Thus our solution to the dilemma presented in the last section is to store
the necessary information in more attributes within the class file. All that is
needed is a set of annotations that would allow the verifier to recognize what
type is actually meant to be represented in the bytecode where an erased,
flat type actually appears. In the previous example, the new instruction
actually references the flat type Store in the bytecode, but what it meant
to reference was the LOOJ type Store<String>.

Unfortunately, one cannot insert comments into the middle of the byte-
code array. Instead, the attributes are added to the method definition con-
taining the bytecode. There is a set of new attributes that together give the
verifier enough information to verify the bytecode using the LOOJ types
that were present at compile time and not the erased, Java types that are
present at run-time.

4.4.1 First Impressions are Lasting

Before plunging into the specification for the new set of attributes, we must
figure out when erased information should be kept around. The answer is
simply that any instruction that introduces a LOOJ type onto the operand
stack requires an attribute specifying which LOOJ type should be used.
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Once the LOOJ type is on the operand stack or in the local variable array,
it is available for type checking for the duration of its existence. In other
words, no further attribute information is needed to keep the LOOJ type
in the verifier during simulated execution. The LOOJ type has, in effect,
created a lasting first impression.

Any instruction that does not introduce a new type (one that manipu-
lates information already on the operand stack) does not require annotation.
For example, even though instanceof statements involving LOOJ types lose
type information during translation, they do not push a LOOJ type onto the
operand stack, and therefore the erased type information is not maintained
in our attribute set. Clearly some instructions may involve type checking
with LOOJ types, such as storing a LOOJ type on the top of an operand
stack into an instance variable, but since the LOOJ type information is al-
ready present in the verifier no further attribute is needed to aid the type
checking process.

In our previous example, the new instruction was shown to be an in-
struction that could introduce a LOOJ type onto the operand stack. The
complete list of instructions is included below, and each instruction receives
its own attribute containing enough information for the LOOJ bytecode
verifier to type check it properly.

Although there are many new attributes, they all contain the same three
pieces of information.

1. The name of the JVML instruction that should be, but is not currently,
introducing a LOOJ type onto the operand stack.

2. The instruction’s index into the method’s bytecode array.

3. The index into the constant pool containing the Utf8 formatted string
representing the LOOJ type to be used by the verifier in place of the
type referred to by the bytecode itself.

When the compiler erases LOOJ type information, it creates the appropriate
attribute and adds it to the appropriate method’s definition.

4.4.2 The Forgetful Commands

We now list the situations and JVML instructions that introduce new types
onto the operand stack or local variable array, and discover which of those
requires more information than is provided by the current Signature at-
tribute.

1. A LOOJ type can enter as a parameter to the method being verified. In
this case, the current Signature attribute, which contains the method’s
LOOJ signature, can be parsed to discover the LOOJ type of the
method parameter, so no further information is needed.
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2. A LOOJ type can be introduced by accessing a field (static or instance
variable) with a LOOJ type2. The getfield command grabs the value
out of the specified instance variable and pushes it onto the operand
stack. Analogously, getstatic is used to access static variable data.
Just as with method parameters, Signature attribute information is
already being produced by the LOOJ compiler for instance variable
definitions, so whenever the type of an instance variable is to be pushed
onto the operand stack the LOOJ type information is already available
to the verifier. Again, no further information is needed.

3. As shown before, the new instruction may introduce a LOOJ type.
Our first new attribute, the NewLooj attribute, specifies where in the
bytecode the new instruction appears and what LOOJ type should be
pushed onto the stack in place of the Java type the bytecode actually
references.

Unfortunately, the new instruction does not in itself create a new ob-
ject. The <init> method must be called on the new object in order
to instantiate it (before <init> is called, the memory pointed to by
the new object reference contains random data).

According to the JVM specification, the class containing the specific
constructor called by invokespecialmust be identical to the reference
type on the top of the stack. For instance, if A is a superclass of B,
then:

new A

dup

invokespecial B/<init>()V

is illegal and should fail verification. Unfortunately, this definition is
not consistent if we annotate the new instruction without annotating
its companion call to <init>. To see this, consider the following code.

new Store<String>();

This would be translated to the JVML:

new Store

dup

2Recall that local variables at the source level do not directly correspond to local
variables in the JVM. At the start of verification, the local variable array contains only
the this reference and the method’s parameters, so any LOOJ types entering the local
variable array must come from one of these other situations.
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invokespecial Store/<init>()V

Using the NewLooj attribute information, our verifier would see this
JVML as:

new Store<String>

dup

invokespecial Store/<init>()V

So the type on the top of the stack when reaching the call to <init>

is different than Store. That is, according to the current JVM speci-
fication, the above JVML is illegal and should instead be:

new Store<String>

dup

invokespecial Store<String>/<init>()V

However, since in either case the same actual method code would be
called at run-time to initialize the newly allocated object space (LOOJ
is, after all, a homogeneous implementation of parametric polymor-
phism) there is no need to annotate the invokespecial instruction in
the same way as the new instruction.

Thus we simply revise the JVM specification so that a constructor
method called on a flat type can initialize any polymorphic instantia-
tion of that flat type. This saves us the trouble of adding an unneces-
sary attribute.

4. anewarray creates a new array of the specified reference type (there
are specific commands for creating numerical arrays). Thus an array
of String would be created via the JVML code:

anewarray [Ljava/lang/String;

The NewLoojArray attribute contains the index into the bytecode
array where the command can be found and the LOOJ array type to
be pushed onto the operand stack.

5. multinewarray, which creates a multidimensional array, has the anal-
ogous MultiLoojArray attribute containing the usual information
associated with it.
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6. The four invoke* instructions reference methods that may return a
LOOJ type which would be pushed onto the operand stack. In most
cases, the return type can be found in the LOOJ type signature stored
in the called method’s Signature attribute and no further attribute
information is necessary.

One must also consider the translation of a call to a parameterized
method. Consider the following situation:

class Foo {

T foo<T>() { ... }

public static void main(String args[]) {

Foo f = new Foo();

String s = f.foo<String>();

Integer i = f.foo<Integer>();

}

}

Because of type erasure, both method calls to the polymorphic method
foo<T>() would appear in the JVML as:

invokevirtual Foo/()Ljava/lang/Object;

However, the Signature attribute would allow us to conclude that the
method really meant to return a T, which in the first call is a String

and in the second an Integer. As explained above, the Signature
attribute does not contain enough information for the verifier to deduce
this.

The PolyMethod attribute specifies which type should actually be
returned by the method (and, by extension, pushed onto the operand
stack).

7. The checkcast instruction replaces the type on the top of the operand
stack with the type that it is to be cast to and so could certainly
introduce a LOOJ type. However, as shown in the last chapter, a type
cast involving a LOOJ type is translated by by the LOOJ compiler
to a more complicated expression. For convenience, that example is
repeated again here.

(Store<String>)object;

becomes:
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Object $synth_1$;

((($synth_1$ = object) == NULL)

||

((Store)$synth_1$.$instanceOf$Store(

new PolyClass(Integer.class)))

? (Store)$synth_1$

: throw new ClassCastException();

In this situation it is clear that Store<String> should be the type
on the top of the operand stack after simulating the execution of that
mess of an expression, but when it is translated to JVML that single
line of Java becomes a whole set of JVML instructions.

Where we actually want the LOOJ type to be pushed onto the operand
stack is certainly not after the call to $instanceOf$Store() (a method
synthesized by the LOOJ compiler), but rather after the actual type
cast of the synthesized variable $synth 1$. That one part of the large
expression above fortunately corresponds to a single JVML statement:

checkcast Store

As usual, our next attribute, CheckLoojCast, contains the index
into the bytecode array for the instruction and the actual (i.e. LOOJ)
type that should be pushed onto the operand stack.

A quick examination of the remaining JVML commands will convince
the reader that these are the only instructions that could possibly enter a
new LOOJ type onto the operand stack or into the local variables. Thus the
above set of attributes contains enough information for the verifier to type
check bytecode using LOOJ types.

Now that the appropriate type information can be passed to the LOOJ
bytecode verifier, we need to describe the modified type checking algorithm
that takes advantage of this information to pass code lacking the stupid
casts. This is done in Chapter 5.

4.5 Bridge Methods

Removing stupid casts is only one of the two optimizations we hope that our
enhanced JVM will provide. The other is to eliminate the overhead created
by bridge methods and there is currently no way for the VM to recognize a
method as a bridge method.

As before, we turn to attributes to convey that information. When a
bridge method is created by the compiler it adds a BridgeMethod attribute
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that includes an index into the constant pool containing a MethodRef that
references the method to which our bridge method bridges.

For example, consider the following LOOJ source.

class Store<T> {

T value;

public void setValue(T newVal) {

value = newVal;

}

}

class GrainSilo<T extends Grain> extends Store<T> { ... }

The translation of GrainSilo, with an added bridge method, is:

class GrainSilo extends Store {

void setValue(Grain newVal) {

value = newVal;

}

/* Bridge Method */

void setValue(Object newVal) {

this.setValue((Grain)newVal);

}

}

Figure 4.2 contains a representation of how the BridgeMethod attribute
stores information in the class file. Note that the bridge method is not the
new version of the method in GrainSilo, which takes a Grain as a parame-
ter, but rather the inherited version with the original signature, which takes
an Object as a parameter. Recall that the latter version is synthesized to
ensure that method calls statically bound to it are forwarded to the new,
correct version of the method.

What exactly the LOOJ virtual machine does with this information to
minimize the run-time cost of bridge methods is explained in Chapter 5.

4.6 Summary

This chapter explained how the Signature attribute is used by the LOOJ
compiler to allow for separate compilation of source files. It also explained
how that same information can be used by the verifier for some of the type
checking that it performs. Unfortunately, we saw that the Signature at-
tribute was not sufficient by itself. To complement the Signature attribute
we created a small set of attributes that together form a complete set of
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MethodRef: setValue(Ljava/lang/Object;)V

Constant Pool

MethodRef: setValue(LGrain;)V

Utf8 String: setValue(TT;)V

method signature

LOOJ signature

method signature

LOOJ signature

BridgeMethod

setValue() data

setValue() data

Store

GrainSilo

Figure 4.2: A graphical representation of the information stored in a
BridgeMethod attribute.
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type information needed by the LOOJ bytecode verifier. We also used at-
tributes to label bridge methods for method call optimization in the VM.
The optimization will be describe in Chapter 5.

After modifying the LOOJ compiler, the new set of LOOJ attributes
annotating class files is the following:

• Signature

• BridgeMethod

• NewLooj

• NewLoojArray

• MultiLoojArray

• CheckLoojCast

• PolyMethod

Now that we can provide the verifier with the knowledge of the erased
LOOJ type information, we must describe our modified type checking algo-
rithm.



Chapter 5

Introducing LOOJVM

The public is more familiar with bad design than good design.
It is, in effect, conditioned to prefer bad design, because
that is what it lives with. The new becomes threatening,

the old reassuring.

– Paul Rand

T
his chapter presents the design and implementation of our JVM mod-
ification. Before discussing the details of our design, we will restate
our goals. They are:

• Implement parametric polymorphism in the JVM. This implementa-
tion should allow for code not containing stupid casts to be run safely
and efficiently.

• Bridge method invocations should not contain the usual overhead.

• Implement LOOJ language features, including ThisType, ThisClass,
and exact types, in the JVM.

• Include the above features in the JVM without affecting the run-time
speed of classes not using LOOJ type features.

• Include the above features in the JVM in such a way as to run faster
than GJ or LOOJ code currently runs.

• Do all of the above without modifying the JVM’s run-time environ-
ment, as that would require the potential modification of complicated
algorithms such as garbage collection and JIT optimizations.

We will start with an overview of the algorithm’s design. We then pro-
ceed to examine the type-checking rules in the LOOJ source language and

67
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describe algorithms that implement these rules in the modified VM. Next,
we describe the optimization used to alleviate the cost of bridge methods.
We then restate the preprocessing algorithm and summarize the design de-
tails. We conclude with an informal argument that our modifications to the
Java bytecode verifier’s type system do not create loopholes that may be
taken advantage of by malicious code.

5.1 Overview of Algorithm Design

The philosophy behind our design is to use as much of the existing struc-
ture of the JVM as possible so that modifying existing implementations is
relatively easy. Recall that type checking essentially involves utilizing the
class pool and hierarchy so that when a type (or string representation of
the signature of a type retrieved from the constant pool) is encountered, we
can simply get the class from the hashtable and traverse the class hierarchy.
Therefore, our design involves adding LOOJ types, such as instantiations of
a polymorphic class, to the class hierarchy so that they can be used to type
check just as normal types are.

Therefore, our algorithm must add all LOOJ types to the class pool and
class hierarchy. It does this in a preprocessing step directly before pass 3 of
bytecode verification. Since pass 3 is performed on all classes before they
are used regardless of how they are loaded, this preprocessing algorithm is
applied to all classes with LOOJ signature attributes.

The basic specification for preprocessing a class is as follows:

1. Process the class’s LOOJ signature, if one exists. As described in
Chapter 4, the LOOJ type signature for a class contains a list of its
type parameters and their bounds, its LOOJ superclass signature, and
the LOOJ signatures of any implemented interfaces.

If an interface is said to be implemented exactly, check that it is imple-
mented exactly (i.e. that the class has exactly the set of methods the
interface promises, constructors, and no other methods) and record
that the implementation is exact.

Add new LOOJ types encountered to the hierarchy. The algorithm
for adding a new LOOJ type to the type hierarchy is described in
subsection 5.3.1.

2. For each field definition, process LOOJ attributes for the field and
save Signature information with its representations in memory. During
type checking of field access, the LOOJ type will be used in lieu of the
normal type. Add new LOOJ types encountered to the hierarchy.

3. For each method definition, process LOOJ attribute method informa-
tion as follows.
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(a) Process the Signature attribute, if present. Add new LOOJ types
encountered to the hierarchy.

(b) Process bytecode annotations (these include many of the new
attributes, such as NewLooj, described in Chapter 4). Save in-
formation from these attributes so that it is available during byte-
code verification of the method. After verification, information
from bytecode annotations may be forgotten.

As usual, add new LOOJ types encountered to the hierarchy.

(c) Process the BridgeMethod attribute, if present. Ensure that the
LOOJ signature for this method is identical to the LOOJ signa-
ture of the bridge method (this may require preprocessing the
method to be bridged to). Then cause both methods to share
bytecode in the VM. Thus instead of forwarding the method call,
a bridge method becomes an alias to the same bytecode.

The details of this algorithm will be explained throughout this chapter.

5.2 Why Reinvent the Wheel?

The basic idea behind the new type checking algorithm is to utilize the ex-
isting type checking framework as much as possible. We build the LOOJ
type hierarchy within the standard Java type hierarchy, creating and insert-
ing LOOJ types into the class pool as they appear. Therefore, whenever
the verifier asks the question “can β be used as an α”, it uses the same
techniques, including searching the supertype hierarchy and implemented
interfaces hierarchy.

For example, the superclass of type GrainSilo<Grain> would be type
Store<Grain>, so a search for their first common superclass would yield
Store<Grain>. Conversely, Store<String> and Store<Integer> have only
the common superclass Object.

Just as before, to get a handle on the class Store<String>, one would
simply have to look in the class pool, using “LStore<String>;” as the
key. The question arises: when and how do we build the LOOJ hierarchy?
Before answering this, we first discuss the type-checking rules LOOJ uses
on its language extensions.

5.3 LOOJ Type Checking Rules

This section reviews LOOJ type checking rules and explains how they are
implemented in the virtual machine. The next section explains how the
LOOJ type hierarchy is constructed.

The next four subsections detail the type rules for polymorphic types,
type parameters, exact types, ThisType, and ThisClass. Each of those
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StoreInterface<Grain>

Store<Grain> Store<Object>

StoreInterface<Object>

Object

GrainSilo<Grain>

Figure 5.1: An illustration of polymorphic extension rules.

subsections includes both the type rules that apply in the source language
and how those rules are implemented in the modified virtual machine.

5.3.1 Polymorphic Types

In order for one instantiation of a polymorphic class to be an extension of
another instantiation of a (possibly different) polymorphic class, the corre-
sponding type parameters must be identical. For example:

/* Correct Extensions */

GrainSilo<T> extends Store<T>

GrainSilo<Object> extends Store<Object>

GrainSilo<Grain> extends Store<Grain>

Store<Grain> implements StoreInterface<Grain>

/* NOT Correct Extensions */

GrainSilo<Grain> extends Store<Object>

Store<Grain> extends Store<Object>

Store<Grain> implements StoreInterface<Object>

Thus even though Grain extends Object, GrainSilo<Grain> does not ex-
tend Store<Object>, and Store<Grain> does not extend Store<Object>.
These relationships are illustrated in figure 5.1.

To illustrate what exactly is meant by by “corresponding type parame-
ters”, consider the following example of what they are not.

class A<T> { ... }

class B<T> extends A<String> { ... }
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In this case, B<Grain> is a subtype of A<String> because the type parameter
T in A has nothing to do with the type parameter T in B.

So in order for a type parameter in some polymorphic subclass B of a
polymorphic class A to correspond to a type parameter in A, it must be used
to instantiate the value of a type parameter in A.

Now consider the following trivial example.

class A<W> { ... }

class B<T> extends A<T> { ... }

In this case, T in B corresponds to W in A since T is used to instantiate W.

In the VM

As stated earlier, we plan on using the existing type checking framework as
much as possible in order to avoid any substantial redesign. Therefore we
would like to be able to lookup the type Store<Grain> in the class pool by
its string signature just as we would for a normal class. Fortunately, each
instantiation of a polymorphic type has a unique type signature, so string
lookup works as usual.

Now we must explain how we type check polymorphic classes in the
bytecode verifier. As explained in the type checking rules above, one poly-
morphic instantiation may extend another (assuming one extends the other
at the source level) only if their corresponding type parameters are identi-
cal. Their type parameters are identical only if the string signatures of the
corresponding type parameters are identical.

Since we are using the existing type checking framework, all we have to
do then is correctly add polymorphic instantiations to the class hierarchy.
Given that:

SomeClass<ABCD,...> extends SuperClass<BD,...>

where A, B, etc. refer to the string signatures of the type parameter instan-
tiations (for instance, A = “LGrain;”), we use the following algorithm:

1. Ensure that the classes and interfaces used to instantiate the poly-
morphic class do not violate the declared bounds of the class’s type
parameters. If they do, raise a TypeParameterBoundException.

2. Use the type signature of the polymorphic instantiation to insert the
new class into the class pool and class hierarchy. This class is not a
full, heterogeneous class, but rather a lightweight wrapper specifically
used for type checking in pass 3 of verification, containing information
about its type parameters, pointers to classes it extends and interfaces
it implements (so that it can be used for type checking), and a pointer
to its flat class (recall that we are using a homogeneous implementation
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strategy, so all method code and static variables are in the flat class
and are shared by all instantiations of the polymorphic class).

The data contained in this lightweight class used for type checking is
described in more detail in section 5.4.

3. Construct the correct superclass signature. The signature starts with
an “L” and is followed by the superclass’s name. It then contains a
“<” and a list of the type signatures of the superclass.

Fill in the type signatures of SuperClass. We can find out which type
parameters in SomeClass correspond to others in SuperClass through
the LOOJ signature of SomeClass described in subsection 4.2.1. End
the type signature with “>;”.

4. Lookup the superclass in the class pool and class hierarchy. If the
superclass does not exist, add it to the hierarchy starting at step 1
above. Fill in the class’s pointer to its superclass.

5. For each superinterface, construct its correct type signature in the
same way the superclass signature was constructed. Add the interface
to the type hierarchy from step 1 if not already present and fill in the
class’s pointer to the interface.

Once the type hierarchy for a particular polymorphic instantiation is
setup in the class hierarchy, type checking works identically to the current
model. That is, if one wants to see whether some polymorphic type or
instantiation β can be used as an α, we simply follow the hierarchy up as
usual.

5.3.2 Type Parameters

A type parameter is treated as an extension of its bound in the source
language. For example, in our GrainSilo example any variable that is
declared to be of type T is actually treated as if it were an extension of
Grain. This behavior is reflected in the class’s erasure. This aspect of type
checking type parameters is pretty straightforward.

Things are a little more complicated when we are type checking a method
call to an object that is statically bound to a particular instantiation of a
polymorphic type. Consider the following example:

GrainSilo<Wheat> g = new GrainSilo<Wheat>();

...

Wheat w = g.getValue();

The method call to getValue() is statically bound to a method with signa-
ture getValue()TT;. However, since g is statically a GrainSilo<Wheat> it
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clearly should not return a Grain or a T, which may not have any meaning
in the current scope.

Thus if a type parameter is statically instantiated, we must use its in-
stantiated static value in place of its bound for type checking.

In the VM

Unlike polymorphic instantiations, type parameters are types that do not
correspond directly to any type in the type hierarchy. That is, if we en-
counter the type signature TT;, which represents a type parameter, then we
cannot simply lookup T in the class pool and use what we find to type check
variables of type T. Instead, we use its bound or, if available, its instantiated
type, just as in the source language.

For example, in our Store<T> class, getValue() returns a T. Consider
the following code:

Store<String> store = new Store<String>();

store.setValue(‘‘foo’’);

String s = store.getValue();

Through the getValue()’s Signature attribute, we know that its LOOJ type
signature is ()TT;. However, we cannot simply look up the bound of T in
Store since, in our current situation, the meaning of T has been refined
through its instantiation as String.

We will now formalize this rule. During type checking, when a type
parameter is encountered:

1. If the type parameter is encountered by accessing a field or method
in an instantiation of a polymorphic type, substitute the instantiated
type of the type parameter. We note that polymorphic instantiations
must therefore store their type parameters’ instantiated values and not
simply superclass and superinterface pointers.

If the instantiated type found is another type parameter, repeat this
step until an actual type is found.

2. If the type parameter is a parameter from the class containing the
method currently being verified, or from the method itself in the case
of a polymorphic method (in other words, if it is an uninstantiated
type parameter), then treat it as if it could be any extension of its
bound.

The second rule deserves some minor clarification. If a type parameter T’s
bound is α, we cannot assign an α into a variable of type T because T may
be an extension of α. The value in a variable of type T can, however, be
assigned to a variable of type α.
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To continue with our previous example, using this algorithm the method
call to getStatic() is received by an instantiation of a polymorphic class.
We consult the data in this instantiation and find that T is really String

and therefore substitute a String for the return value of the method.
Thus when making a method call or accessing a field from an instanti-

ation of a polymorphic type, we have to be careful to use the instantiated
type and not simply the declared bound of the type parameter.

5.3.3 No Stupid Type Casts: LOOJ at Work

The following is our first example of the bytecode verification using LOOJ
type information. It is also an example illustrating that stupid type casts
are unnecessary with a smart type checker. As such, we will review all the
steps involved in type checking.

Consider our previous example. It is repeated here for convenience.

Store<String> store = new Store<String>();

store.setValue(‘‘foo’’);

String s = store.getValue();

When we translate this to bytecode, we would normally get

new Store

dup

invokespecial Store/<init>()V

dup

ldc "foo"

invokevirtual Store/setValue(Ljava/lang/Object;)V

invokevirtual Store/getValue()Ljava/lang/Object;

checkcast Ljava/Lang/String;

The dup instructions above exist because non-static method invocation in-
structions pop the receiving object reference off the stack.

Although nothing is done with the String retrieved from getValue()

at the end of the method, we see that there is a type cast inserted to ensure
that the object on the top of the stack is recognized to be of type String

and not Object, the type supposedly return by the erased version of the
getValue() instruction.

Now suppose we remove the stupid cast.

new Store

dup

invokespecial Store/<init>()V

dup

ldc "foo"

invokevirtual Store/setValue(Ljava/lang/Object;)V

invokevirtual Store/getValue()Ljava/lang/Object;
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We will now proceed to verify this bytecode and will end up with a String

on top of the stack at the end, and this without the extra type cast.
Through the NewLooj attribute, we know that the first line should be:

new Store<String>

When we reach it, we can therefore push the type Store<String> onto the
operand stack instead of the incorrect flat type Store. The ldc instruc-
tion simply pushes an object reference to the string “foo” onto the operand
stack. For verification purposes, we do not care what the value of that
string is, only that the type of reference being pushed onto the stack is
Ljava/lang/String;. So now we have an object of type String on top of
the stack, followed by an object of type Store<String>.

The next instruction looks in the Store class for the method setValue()

with the given type signature. When it finds this method, our verifier notices
that it is annotated with a Signature attribute stating that its actual type
signature is:

setValue(TT;)V

When we type check the method call, we therefore just check that the refer-
ence type on the top of the stack, which is currently a String, can be used
as a TT;.

To discover what T means in the current context we need to check what it
has been instantiated with in the receiving object. In this case, the receiving
object (the next thing on the stack after the parameters to the method being
called) is Store<String>, in which a T is really a String. So this method
call is OK.

A similar line of reasoning allows us to push another String onto the
stack for getValue()’s return type. Therefore, at the end of verification,
these lines produce a String on the top of the operand stack without the
stupid type cast, as desired.

Unfortunately, a formal proof that it is safe to remove all type casts in-
serted by GJ or LOOJ is beyond the scope of this thesis, and would probably
make a pretty good doctoral thesis.

5.3.4 Exact Types

Recall that if an object is exactly an α, then it is not an extension of α.
So to check if a β can be used as an @α, then we simply have to check if
β = @α. Some might be confused with the above rule. For example, why
is it that we cannot simply check β = α? The answer is that whenever the
type α is encountered, it represents any extension of α, whereas the type
@α represents exactly the type α, so the two signatures are in fact distinct.

A class implements an interface exactly if it declares that it implements
the interface exactly, contains all the methods from that interface, any num-
ber of constructors, and no other methods. For example:
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interface SelfStoreInterface {

void setValue(@ThisType newValue);

@ThisType getValue();

}

class StoreA implements @SelfStoreInterface {

private @ThisType value;

...

public StoreA() { ... }

public StoreA(@ThisType value) { ... }

public StoreA(int foo) { ... }

}

class StoreB implements @SelfStoreInterface {

private @ThisType value;

...

}

Both StoreA and StoreB implement exactly SelfStoreInterface, so any-
where an exact SelfStoreInterface is expected we can safely use either
StoreA or StoreB.

In the VM

Type checking exact types during pass 3 of bytecode verification requires us
to keep track of which types are known to be exact. The first thing we must
do to accomplish this is to keep track of which interfaces are implemented
exactly by a given class.

During verification, we keep a set of flags for the types stored on the
simulated operand stack and a set of flags for the types stored in the local
variables. The flags denote which types are known to be exact. It is im-
portant to keep track of every type that is known to be exact. Aside from
those entering the data flow analysis as method parameters, as the return
type from a method invocation, or as the type of an instance variable that is
pushed onto the stack, any object creation instructions create exact types,
such as new and newarray.

Type checking using exact types can be formalized as follows:

1. When performing a merge operation, the exact flags are propagated
unless two reference types do not agree and need to be merged into a
superclass. In that case the flag is set to false in the resulting operand
stack.

2. When checking if a β can be used in place of an α, we check if α is an
exact type. If so, and β = @α (i.e. β = α and β is known to be an
exact type) then type checking succeeds. Otherwise it fails.
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If α is not an exact type, the value of β’s exact flag is ignored.

Thus type checking exact types relies on our keeping track of which types
are known to be exact.

5.3.5 ThisType and ThisClass

Even though ThisType and ThisClass are basically specialized type param-
eters, they introduce complications not found when type checking normal
type parameters. This subsection first describes the basic type rules1 in-
volving ThisType and ThisClass and explains how those type rules are
implemented in the VM.

The Basic Rules

The type rules for ThisType and ThisClass are pretty straightforward. If
those keywords appear in a class C with exact interface IC, then the rules
are:

@ThisClass this

ThisClass extends C

ThisType extends IC

ThisClass implements @ThisType

The first rule states that this is a @ThisClass. However, we should
elaborate on the rules regarding access to private instance variables. this

has access to private variables, even though the meaning of this changes
when methods are inherited. To remain consistent with Java’s current ap-
proach, ThisClass also has access to a class’s private variables.

The next two rules are more straightforward. ThisClass refers to C or
any class that inherits from C, so it clearly extends C. Similarly, in C it is
pretty clear that ThisType extends IC.

The final rule trivially states that ThisClass implements @ThisType.

In the VM

Fortunately, we do not need to make special cases to type check ThisClass

and ThisType in the virtual machine, as both can be viewed as type param-
eters whose bound is constrained in every subclass. We treat the bound of
ThisClass to be the class that it appears in, or the particular instantiation

1Some of the details described here differ from type rules presented in [Fos01]. This is
due to undocumented refinements to the type system since Foster’s thesis. For instance,
a variable of type ThisType can no longer access public instance variables. The rules
presented in this thesis should therefore be considered more accurate where discrepancies
exist.
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of a parametric class that it is used by (in the same way that we know what
type a type parameter really represents in an instantiation).

Similarly, the bound of ThisType is the public interface of the class that
it appears in. The LOOJ compiler generates an exact interface implemented
by a class if an exact interface is not supplied. This interface is used within
the type checker as a bounding interface for ThisType.

In cases where the exact interface implemented by a class in unavailable
at link time, the virtual machine should generate the interface itself if that
class (or any superclass or superinterface of that class) uses ThisType.

The formal type checking rules for ThisType and ThisClass are the
same as for bounded type parameters as described in subsection 5.3.2.

5.3.6 An Example: Verifying More Complex LOOJ Types

The more features we add to the type system of a language, the more difficult
it is to create examples that illustrate all the features in a small amount of
space. Here we will verify the produce() method of a self-replicating factory
class to illustrate how we type check exact types and ThisType.

Consider the following code:

interface Factory<T> {

public @T produce();

}

class Replicator<T> implements Factory<ThisType> {

public @ThisType produce() {

@Replicator<T> r = new Replicator<T>();

return r;

}

}

This simple example does not pass static type checking, and will fail byte-
code verification. In doing so, it illustrates the concepts we wish to show.
The produce() method translates to the following JVML:

new Replicator

dup

invokespecial Replicator/<init>()V

areturn

For the sake of repetition, when the analyzer looks at the bytecode array
it substitutes the LOOJ types it receives via the LOOJ attributes for the
types in the bytecode. Thanks to the NewLooj attribute, the verifier sees
the above JVML as the following:
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new Replicator<T>

dup

invokespecial Replicator/<init>()V

areturn

When we initialize the bytecode analyzer, it starts off in the state below.

Operand Stack Locals

------------------------------------------- (0)

unstable @ThisClass

unstable

Notice how we are using ThisClass instead of Replicator for the local
variable reference analogous to this, and also notice that it is an exact
reference.

Now we simulate execution.

• The new instruction pushes a reference of type @Replicator<T> onto
the operand stack and the dup instruction duplicates that reference
type.

Operand Stack Locals

------------------------------------------- (1)

@Replicator<T> @ThisClass

@Replicator<T>

As mentioned earlier, we allow an <init> method to initialize any
instantiation of the type on which the method is called. Thus the
method invocation pops off the reference on the top of the stack and
initializes it.

Operand Stack Locals

------------------------------------------- (2)

@Replicator<T> @ThisClass

unstable

• The areturn instruction returns the object reference on the top of
the operand stack (if the stack were empty or if the type on the top
were a primitive type, verification would fail). Here we must check
if @Replicator<T> can be used as a @ThisType, which is the return
type of produce(). Recall that ThisType refers to any extension of the
exact interface implemented by the currently executed object. There-
fore, in a subclass of Replicator with additional methods it would
be illegal to use a @Replicator<T> as a @ThisType! This failure was
explained in more detail in subsection 5.3.2.

Thus our type checker has correctly proved that produce() fails veri-
fication because @Replicator<T> cannot be used as a @ThisType.
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Finally, recall that, in the implementation, the type @Replicator<T> is
really a Replicator<T> on the simulated operand stack, but that the set of
exact type flags tells us that it is an exact type during type checking.

5.4 Modifying the Class Loader

In the following sections we describe the modifications made to the class
loader and the new preprocessing step added for bytecode verification that
prepares a class’s LOOJ type hierarchy for bytecode verification.

Chapter 4 described how LOOJ type information is maintained from
the source language to the verifier. The class loader must be modified to
recognize all LOOJ attributes and the Class run-time class representation
must be modified to be able to hold this information after class loading.

This section describes what extra data is put in each Class object during
load-time. As we are creating a modification specification that should be ap-
plicable to any current JVM, this discussion is intentionally vague. Specific
code snippets are not provided, nor is specific data structure information.
All that is shown is what information should be kept in order to complete
type checking in pass 3 of verification.

Essentially, our modified class loader has to recognize all LOOJ at-
tributes and save that information somewhere for verification. As Chapter
4 explains what LOOJ information is maintained through attributes in the
class file, we will not repeat that information here. Suffice it to say that all
attribute data needs to be stored and accessible for type checking during
verification.

Some of the attribute information should be around after verification
completes. For instance, if a method with a LOOJ type signature is called
from another class that is to be verified, we need to use that LOOJ type
information to type check the parameter types passed to the method as well
as to push the correct return type onto the simulated operand stack.

The attribute data that is not needed after verification completes is
the set of attributes describing method bytecode and the BridgeMethod at-
tribute. Since the bytecode has passed the one-time verification process, all
details regarding LOOJ type information in the bytecode and BridgeMethod
attribute information may be thrown out to save space. The reason that the
BridgeMethod attribute is unnecessary post verification will become clear
when class preprocessing is described.

In summary, prior to passing verification a Class object must contain
the following information:

• Pointers to superclass and superinterfaces.

• The LOOJ type signatures of the class itself, its fields, and its methods.

• A list of the class’s type parameters and their corresponding bounds.
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In the case of the current Class representing an instantiation of a poly-
morphic class or interface and not merely a flat class, pointers to the
instantiation types of its type parameters are needed. Furthermore, a
pointer to the flat version of the class is needed.

• Aside from its LOOJ type signature, each method must maintain the
following information.

– A list of bytecode indices modified by LOOJ attributes and the
correct LOOJ types associated with those indices.

In other words, information in an attribute such as NewLooj
should be maintained with the method’s data in memory until
the method passes verification.

– A list of its type parameters and their bounds if the method is
polymorphic.

– A pointer to the method it bridges to if the method is modified
by a BridgeMethod attribute.

To reiterate, our approach is a homogeneous design, but, not unlike the
lightweight wrapper classes in NextGen, the lightweight LOOJ classes rep-
resenting instantiations of a parameterized type which are inserted into the
type hierarchy contain only the instantiation-specific information described
above that is needed for type checking. The majority of the class’s informa-
tion is contained in the flat class in memory.

5.5 Preparing for Verification

The type hierarchy is necessary for bytecode verification and, as mentioned
above, we take advantage of the simplicity of the current model of type
checking in our design. However, we have not yet described how we build
that type hierarchy. Its construction occurs just before pass 3 of verification
so it is effectively a preprocessor for the pass 3 of verification.

The class loader received the LOOJ type information from the class file
but did nothing with it other than store it in some reasonable way with the
class’s data in memory. Therefore, there still are no LOOJ types within the
VM’s type hierarchy after class loading. This is different from the traditional
way the class hierarchy is built, where classes are added to the hierarchy
during the class loading phase.

We should emphasize that any LOOJ types added to hierarchy during
our preprocessing algorithm are not used a run-time. They only exist in the
hierarchy to facilitate type checking of LOOJ code.
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GrainSilo<T>

Store<T>

GrainSilo

Store

Object

StoreIfc<T> StoreIfc

Figure 5.2: An example type hierarchy.

5.5.1 The LOOJ Type Hierarchy

The preprocessing algorithm that constructs the LOOJ hierarchy utilizes
another algorithm to insert types into the existing type hierarchy. This
algorithm was actually described in subsection 5.3.1 with the description of
how polymorphic types are inserted into the LOOJ type hierarchy.

As mentioned above, type parameters, ThisType, ThisClass, and exact
types do not have specific wrapper classes associated with them in the type
hierarchy. Instead, as they are encountered they are treated in context by
the type checker using the algorithms described in previous sections.

As an example of a LOOJ type hierarchy, consider the type hierarchy in
figure 5.2. Note that the flat types are surrounded with dotted lines. This is
to underscore the important point that flat types are not allowed in LOOJ,
and are therefore not used during verification. In fact, if bytecode attempts
to use a flat class as a type it fails verification.

The dotted line from Store<T> to Store is a pointer from the LOOJ
type Store<T> to its flat type Store. The other lines out of Store<T>

point to the class it extends and the interfaces it implements, including
the exact interface it implements, StoreIfc<T>, which is generated by the
LOOJ compiler. The exact nature of this implementation is underscored by
a double line.

Now, suppose we encounter GrainSilo<Grain>, the instantiated poly-
morphic type of the flat class GrainSilo, during verification. As it does
not already exist in our type hierarchy, we need to add it as well as any
superclasses or superinterfaces not already present to the type hierarchy as
described in subsection 5.3.1. After adding all the necessary classes by fol-
lowing the above algorithm, we end up with the type hierarchy in figure
5.3.
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GrainSilo<T>

Store<T>

GrainSilo

Store

Object

StoreIfc<T>

GrainSilo<Grain>

Store<Grain>

StoreIfc StoreIfc<Grain>

Figure 5.3: The type hierarchy after encountering GrainSilo<Grain>.

To summarize, when we see a new LOOJ type, we add it to the class pool
and add all necessary but missing types to the hierarchy as well. Inserting
a new LOOJ type into the type hierarchy is therefore a recursive process.

A Note on Implementation

If the reader has been thinking about implementation details while reading
about type signatures and the type hierarchy, then he has noticed that the
JVM and our attributes rely exclusively on strings to describe their type
system.

As hinted at in the algorithm for adding a new polymorphic instantiation
in subsection 5.3.1, when we first encounter a new LOOJ type we have to
do some fairly intricate parsing of the type signature. Information such as
the bounds for type parameters in an instantiation of a polymorphic class
is obtained this way.

Again, we are not going to delve into specifics regarding the parsing of
type data from LOOJ signatures. The full signature specification can be
found in [Fos01]. Implementation specific parsing methods can be devised
from that specification to extract type information.

5.5.2 Optimizing Bridge Method Calls

If encountered in a method descriptor, the BridgeMethod attribute is pro-
cessed. Recall that a bridge method is simply a method that acts to forward
a dynamically bound call to the correct method code (i.e. it ensures that
methods in a superclass are overridden, not overloaded). It also inserts
stupid type casts to make the forwarding method call possible.
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Before making any modifications to the method body, we first check
that the method to be bridged to is basically compatible with the current
method. As illustrated in figure 4.2, the LOOJ signature of a bridge method
and the method it bridges to should be equivalent, even though their actual,
Java signatures are not.

Once the forwarding call is deemed legal, we replace the code for the
method forwarding with the code for the intended method to be called.
That is, both the bridge method and the method to be bridged to contain
identical bytecode after this step.

In many implementations this is trivial as a method object’s representa-
tion in memory contains a pointer to the array of bytecode to be executed.
If this is not the case, then a method’s body should be copied, which is a
quick operation and a one-time cost.

Thus a bridge method becomes an alias for the actual method code that
is intended to be executed, saving an extra method call every time the bridge
method is called.

As a final point, we should note that there is no easy way to determine if
a method is actually a bridge method or if a faulty attribute has been added
by a malicious virus. In the latter case, since we are verifying all method
calls to this method and the bytecode of the method to be bridged to, the
method is still checked just as thoroughly by the verifier algorithm.

5.5.3 The Preprocessing Algorithm

We now repeat the specification for the preprocessing algorithm. At this
point it should make more sense to the reader.

1. Process the class’s LOOJ signature, if one exists. As described in
Chapter 4, the LOOJ type signature for a class contains a list of its
type parameters and their bounds, its LOOJ superclass signature, and
the LOOJ signatures of any implemented interfaces.

If an interface is said to be implemented exactly, check that it is imple-
mented exactly (i.e. that the class has exactly the set of methods the
interface promises, constructors, and no other methods) and record
that the implementation is exact.

Add new LOOJ types encountered to the hierarchy. The algorithm
for adding a new LOOJ type to the type hierarchy is described in
subsection 5.3.1.

2. For each field definition, process LOOJ attributes for the field and
save Signature information with its representations in memory. During
type checking of field access, the LOOJ type will be used in lieu of the
normal type. Add new LOOJ types encountered to the hierarchy.
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3. For each method definition, process method LOOJ attribute informa-
tion as follows.

(a) Process the Signature attribute, if present. Add new LOOJ types
encountered to the hierarchy.

(b) Process bytecode annotations (these include many of the new at-
tributes, such as NewLooj, described in Chapter 4). Save infor-
mation from these attributes so that it is available during pass 3
verification of the method. After pass 3 verification, information
from bytecode annotations may be forgotten.

As usual, add new LOOJ types encountered to the hierarchy.

(c) Process the BridgeMethod attribute, if present. Ensure that the
LOOJ signature for this method is identical to the LOOJ signa-
ture of the bridge method (this may require preprocessing the
method to be bridged to). Then cause both methods to share
bytecode in the VM. Thus instead of forwarding the method call,
a bridge method becomes an alias to the same bytecode.

In summary, the LOOJ type hierarchy is built during the preprocessing stage
of type checking and not during class loading. Once the class hierarchy is
constructed, type checking during bytecode verification is performed based
on the rules described in this chapter for LOOJ’s non-polymorphic language
extensions, including exact types, ThisType, and ThisClass.

5.6 The Verifier Works: An Informal Argument

Sun is nervous about modifying the bytecode verifier because, during the
early days of Java, a number of flaws in the verifier’s implementation were
discovered that allowed unsafe code to execute on JVMs. A formal proof of
correctness for our verifier’s type system is unfortunately beyond the scope of
this thesis. Indeed, Freund, one of the researchers who worked on Agesen et
al.’s heterogeneous proposal described in Chapter 2, wrote his PhD thesis on
a formal proof of correctness for the current bytecode verifier and developed
a verifier based on this specification. That being said, we will try to argue
briefly that the removal of the type casts normally inserted by GJ and by
LOOJ through erasure is indeed a safe thing to do.

The basic argument is pretty simple: LOOJ knows the casts it inserts are
guaranteed to succeed, so we are removing casts that are, in effect, doing no
work in the first place (hence “stupid” type casts). Moreover, the new type
checking done during bytecode verification is performed under the LOOJ
type rules using the source-level, static LOOJ type information. We know
that the LOOJ language is statically type safe, so if the verifier uses the
same type system then it must also be statically type safe.
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Therefore, we believe that our modified bytecode verifier, whose type
system is the same as the statically type safe LOOJ programming language,
does not introduce any loopholes that might be taken advantage of by ma-
licious code, but due to time constraints we cannot prove this claim more
concretely than we have done via this informal argument.

5.7 Summary

This chapter explained our new LOOJVM type checking algorithm, review-
ing the type checking rules associated with LOOJ types and detailing how
those rules are implemented in the LOOJVM. It also included the prepro-
cessing algorithm that builds the LOOJ type hierarchy used by the type
checker. An example illustrating how the enhanced type checker can verify
LOOJ bytecode not containing stupid casts was presented. The algorithm
optimizing bridge method calls was also given. Finally, it concluded with
an informal argument that our modifications to the bytecode verifier do not
introduce loopholes that could be taken advantage of by malicious code.

The next and final chapter evaluates the JVM modification presented in
this thesis and includes some future work that needs to be done.



Chapter 6

Conclusions

I have not failed. I’ve just found 10,000 ways that won’t work.

– Thomas Edison

W
e have examined other proposals that add parametric polymor-
phism to Java and have presented our proposed modification to
the Java Virtual Machine that includes type checking support for

parametric polymorphism, exact types, ThisType, and ThisClass. Poly-
morphic code without stupid type casts is passed by our enhanced verifier
and the extra method call associated with bridge methods has been by-
passed.

This chapter includes a summary of the design, a brief analysis of its
success, and concludes with a list of future work that needs to be done on
LOOJ and LOOJVM. The current state of implementation can be found in
the appendices.

6.1 LOOJVM

The design of the LOOJVM affects several major parts of the LOOJ lan-
guage. The first of these is the compiler. As described in Chapter 4, the
LOOJ compiler was modified to provide further attribute information nec-
essary for bytecode verification. Moreover, the LOOJ compiler was modified
to not add the extra type casts usually inserted during erasure.

The second area affected is the class loader and the Class data struc-
ture in the VM. The class loader was modified to recognize the new LOOJ
attribute information and the Class structure was modified to be able to
hold this information, as well as information for specific instantiations of a
polymorphic type. These modifications were described in section 5.4.

87
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The next area affected was the run-time class hierarchy and class pool.
These were built for type checking by a preprocessing algorithm described
in subsection 5.5.3. The preprocessor also optimized bridge method calls as
described in subsection 5.5.2.

The final area affected was the bytecode type checker. It was presented
in Chapter 3 and the new rules need for LOOJ type checking and their
algorithmic implementations in the verifier were described in section 5.3.

In summary, our design maintains static type information from the
source code through link-time, instead of just through compilation, allowing
our verifier to pass bytecode produced by the LOOJ compiler as if it were
never erased to standard Java.

6.2 Success?

To evaluate the success of our project, let us restate our design goals.

• Conceptually Simple: It should be easy to make the specified mod-
ifications to existing JVMs. Companies and open source groups have
invested too much time and money into JVMs to start from scratch.

• Easy Just-In-Time Compilation: Any JVM modification should
fit into current JIT compilation techniques with little modification to
existing JIT compilers. Even a great interpreter cannot outperform a
mediocre JIT compiler, so any JVM enhancement that rules out easy
JIT compilation is unreasonable.

• Bytecode Compatibility: All existing Java class files should run
correctly on the enhanced JVM according to the current JVM specifi-
cation.

• Efficient Legacy Code: All existing Java bytecode should run effi-
ciently on the enhanced JVM. Efficiency means that it should run just
as fast (or very close to as fast) as on an unmodified JVM.

• Efficient Parameterized Code: Code using new language features
should also run efficiently. In this case, efficiency means that it should
run faster than code containing the casts used in current “generic”
data structures.

The first two goals have been realized. By restricting our modifications
to the compiler, class loader, and bytecode verifier we have not touched
the most complicated sections in a JVM. The current implementation of
LOOJVM, which is based on the Kaffe1 virtual machine, is only a couple

1Kaffe is a trademark of Transvirtual Technologies, but is published under the GPL.
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thousand lines of code that is in source files separate from the rest of the
virtual machine.

Bytecode compatibility has also been maintained. In fact, a class that
does not have LOOJ attribute information is loaded and verified as if the
language extensions were not even present. This also means that legacy
code is run just as efficiently.

We are currently unsure about the success of the last goal. Although
stupid type casts are no longer necessary due to our enhanced verifier and
bridge method calls no longer require a separate method invocation, there
does not currently exist a standard set of programs from which to benchmark
code programmed with F-bounded parametric polymorphism, let alone code
using other LOOJ type extensions. Moreover, due to the almost heteroge-
neous nature of the preprocessing algorithm and the LOOJ type hierarchy,
there is certainly an increased loading time above that required by standard
LOOJ (i.e. LOOJ run on a standard VM, complete with stupid type casts
and bridge methods). Finally, LOOJ language features, such as the ability
to cast to polymorphic types, still require the run-time PolyClass instance
variables and complicated instruction expansion to work properly, as LOOJ
type information is now forgotten after link time.

Therefore, in code that heavily utilizes generic data structures, our VM
probably runs polymorphic code faster than LOOJ code is run on a stan-
dard JVM, but in degenerate cases with tons of different instantiations of
polymorphic types that are each used only once, the excess preprocessing
overhead associated with preparing each of those instantiations probably
hurts performance.

6.3 Future Work

There is still a lot of work to be done in the LOOJ project. This work falls
under two categories. The first is theoretical language design and the second
is tools and implementation.

6.3.1 The LOOJ Specification

The LOOJ type system itself needs some refinement. In particular, it would
be nice to be able to use the implements keyword to bound type parameters.
Furthermore, it is debatable whether objects of type ThisClass should have
access to private variables of a class because ThisClass really represents any
extension of the current class.

The PolyClass model of run-time first class parametric polymorphism
could be more efficient. The LM project proposed a PolyClassManager

that would act as a class pool for polymorphic types. Such a manager
could be added to the class library supported by the virtual machine to cut
down on the number of copies of a particular polymorphic instantiation in
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memory. Moreover, such an optimization could decrease the relative speed of
an enhanced JVM and would therefore be useful in benchmark comparisons.

6.3.2 Tools and Implementation

There are a number of interesting tools and implementation problems that
still need to be done. To begin with, we would like to produce a production
level compiler. The current LOOJ compiler has been undergoing constant
debugging since the beginning of the project and should be completed. Ide-
ally, our compiler would be able to output either code targeting a standard
JVM or code targeting the LOOJVM.

The LOOJVM itself needs an overhaul, which it will probably receive
this summer. At the moment some of the type checking code surrounding
the use of ThisClass and exact types is pretty buggy, and the organization
of methods could be cleaner. Furthermore, the type checking of polymorphic
methods is currently not supported at all. Like many large projects, the first
time through can be really messy, but many lessons are learned and design
flaws uncovered that allow for a much smoother second implementation.

As mentioned in the last section, we do not know how efficient or ineffi-
cient our current design is. The creation of a set of standard library of test
classes for benchmarking would be invaluable.

Furthermore, there is currently no way to produce degenerate cases to
test the LOOJVM’s verifier. A modified Java Assembler that accepts LOOJ
bytecode syntax and produces a class file with LOOJ attributes would be
really useful, as it could be used to produce code that should fail verification.
At the moment, the only code the LOOJVM tests is code produced by the
LOOJ compiler, which is (hopefully) type safe code to begin with.

One potentially interesting extension to this project would be the devel-
opment of a smarter preprocessor that could remove stupid type casts from
a class file before it even enters the JVM. One drawback to the approach
taken by this thesis is that polymorphic code produced by the LOOJ com-
piler can no longer be run on a standard JVM due to its lack of type casts. It
should be possible to have the compiler output code that contains the dumb
casts but remove them right before execution for smart virtual machines.

Finally, it would be nice to have a LOOJ Emacs mode. After all, GJ has
one.

6.4 Conclusion

We have presented a rather simple modification to the Java Virtual Machine
that allows the bytecode verifier to pass code using F-bounded paramet-
ric polymorphism, exact types, ThisType, and ThisClass, but lacking the
stupid type casts usually inserted during erasure. Our modified VM also
includes an optimization for bridge method calls. We believe that code that
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makes considerable usage of generic data structures will certainly run faster
without the excess type casts associated with standard erasure.

Designing and implementing the LOOJVM has been challenging and is
an ongoing process. Much as the LOOJ compiler has evolved since the pub-
lication of Foster’s thesis two years ago, the LOOJVM and its specification
will likely be refined and improved in the future, but it is off to a very
promising start.



Appendix A

Kaffe

T
he virtual machine implementation modified to create LOOJVM is
the Kaffe1 virtual machine. It is an open source virtual machine
published under the GPL and is freely available at:

http://www.kaffe.org/

Because of the nature of the GPL, LOOJVM is also published under
that license.

This appendix explains why we chose Kaffe and explains some imple-
mentation details provided to give a boost to anyone who desires a peek at
the source code.

A.1 Why Kaffe?

Several other virtual machine implementations were considered for modifi-
cation in this project. We decided that an open source route would be best,
as it would make publishing the resulting source code hassle-free. The two
major open source implementations considered were IBM’s JikesRVM and
Kaffe. The JikesRVM had the advantage of being implemented entirely in
Java (with only a couple hundred lines of C code that is used to bootstrap
the VM when it initially loads). Kaffe is written mostly in C. Furthermore,
the JikesRVM is a more complete and much more efficient JVM implemen-
tation.

However, we found that the developers on the Kaffe developer’s list serve2

provided more consistent and friendly help when we were having trouble

1Kaffe is a trademark of Transvirtual Technologies
2kaffe@kaffe.org.
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deciphering code buried within the virtual machine. The source itself is ex-
tremely well documented and organized, and the structure and organization
of the project was relatively easy to pick up, despite its size.

A.2 Regarding the Implementation

This section is provided to help someone figure out how the implementation
is organized. All modifications made to the virtual machine exist in one
giant “loojvm” patch.

When the source tarball is downloaded, the directory ./kaffe/kaffevm
contains the source code for much of the virtual machine.

The important files that were modified include:

• debug.h - LOOJ debugging comments added (when the loojvm is run
with -the debug LOOJ option, it produces an amazingly large amount
of useful output from the class loader and verifier).

• constants.h - describes the constant pool.

• readClass.c - the class file reader.

• classMethod.c and classMethod.h - files containing the class data struc-
tures.

• baseClass.c, baseClass.h, itypes.c, itypes.h - contain primitive types,
array types, and other things needed for verification.

In addition to the above classes, the verifier subsystem, which was nonexis-
tent at the start of the project, includes the following classes:

• verify.h - common header information for all the verifier’s code files.

• verify2.c - pass 2 of verification.

• looj.h and looj.c - the preprocessing algorithm and LOOJ type check-
ing methods.

• verify blocks.c - methods that verify individual basic blocks.

• verify3.c - the pass 3 data flow analysis algorithm, which uses ver-
ify blocks, complete with type checking code.

There is no guarantee that the organization of the files is going to remain
in this form, so the best way to find out what is going on in the most recent
implementation is to contact the current maintainer, who, at the time of
writing, is Robert Gonzalez.
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