Due Date |
To Turn In: |
To Do On Own: |
Solutions: |
9/15 |
1.3.5, 1.3.7, 1.6.2 + program
|
1.3.1abc, 1.3.2a, 1.3.9, 1.6.1, 1.6.5
|
Solutions 1
|
9/17 |
1.4.1, 1.5.2, 1.5.5, 1.5.6
|
1.4.2ab, 1.5.3, 1.5.7, 1.5.8
|
Solutions 2
|
9/20 |
1.7.2c, 1.7.4ab
|
1.7.3, 1.7.5, 1.7.6
|
Solutions 3
|
9/22 |
1.8.3ab
|
1.8.2abcd,1.8.5abcd
|
Solutions 4
|
9/24 |
2.1.2d, 2.1.3ad, 2.1.4a(i+ii)
|
2.1.1, 2.1.2abc, 2.1.3bc
|
Solutions 5
|
9/27 |
2.2.2b, 2.2.3ac
|
2.2.1ab, 2.2.2a, 2.2.4, create ndfa accepting (a U b)*ab+(aaa U aba)b*
|
Solutions 6
|
9/29 |
2.2.6, create dfa accepting (a U b)*ab+(aaa U aba)b*
|
2.2.7, 2.2.9b, 2.2.10
|
Solutions 7
|
10/1 |
2.3.3, 2.3.6ag, 2.3.11a
|
2.3.1, 2.3.2, 2.3.5, 2.3.6f
|
Solutions 8
|
10/4 |
2.3.7b
|
2.3.4b,2.3.7a
|
Solutions 9
|
10/6 |
2.4.3ad, 2.4.4, 2.4.5a, 2.4.8ac
|
2.4.2,2.4.3bce,2.4.8b
|
Solutions 10
|
10/8 |
2.5.2, Find min state dfa equiv to dfa here
|
2.5.1(i)(iii), both parts a and b
|
Solutions 11
|
10/11 |
Describe an algorithm to determine, given M1 and M2,
if L(M1) and L(M2) are disjoint.
|
|
Solutions 12
|
10/13 |
3.1.3ab, 3.1.5b,3.1.7 |
3.1.2, 3.1.3c, 3.1.4, 3.1.5a, 3.1.9ad
|
Solutions 13
|
10/15 |
3.2.2 |
3.2.3,3.2.4b
|
Solutions 14
|
10/20 |
3.3.2b,3.3.3 |
3.3.1,3.3.2acd,3.4.1
|
Solutions 15
|
10/25 |
No homework because of take-home test |
|
|
10/27 |
3.5.1ab, 3.5.2cd, show {aibjcidj |
i,j >= 0} is not a cfl |
3.5.1cd
|
Solutions 16
|
10/29 |
3.5.3a, 3.7.5a |
3.7.1a
|
Solutions 17
|
11/1 |
4.1.5 |
4.1.1, 4.1.4
|
Solutions 18
|
11/3 |
4.2.1
|
4.2.2
|
Solutions 19
|
11/5 |
4.3.3
|
4.3.1a
|
Solutions 20
|
11/8 |
4.5.3
|
4.5.1, 4.5.2
|
Solutions 21
|
11/10 |
4.7.1 (do carefully - no handwaving!)
|
4.7.2bc
|
Solutions 22
|
11/12 |
4.7.3
|
|
Solutions 23
|
11/15 |
(1) Prove for all n succ n = n+1.
(2) Prove for all m, n, Plus m n = m+n.
(Use induction on m.)
|
|
Solutions 24
|
11/17 |
Define monus in the lambda calculus.
|
Define rem(m,n) in the lambda calculus.
|
Solutions 25
|
11/19 |
None: Midterm 2 due
|
|
|
11/29 |
5.4.1
|
5.4.2a-d
|
Solutions 26
|
12/1 |
5.4.3, 5.7.7e
|
|
Solutions 27
|
12/3 |
Let G be cfg. Show L(G) is infinite iff there is a w in L(G) s.t.
n<=|w|<2n, where n is the number given by the pumping lemma.
|
|
Solutions 28
|
12/6 |
5.4.2eh |
|
Solutions 29
|
12/8 |
Show the computation of Ref(r,w,i) | client(r,w,v).
Show the interference that can occur when running
Ref(r,w,i) | client(r,w,v) | client(r,w,v'), i.e., show the client sending
v can actually get back v'.
|
|
|