
CS 181:

Natural Language

Processing

Lecture 7: PoS Ta!ing

K i m B r u c e

P o m o n a C o l l e g e

S p r i n g 2 0 0 8

Disclaimer: Slide contents borrowed from many sources on web!

PoS Taggers

Rule-Based Tagger - English Two Level
Analysis ! Done last time

Stochastic Tagger: Hidden Markov Model

Transformation-based Tagger

Stochastic Taggers

Based on probability of tag occurring,
given other info.

Requires training corpus.

No probabilities for words not in corpus.

Use distinct testing corpus.

Simplest: choose most frequent tag
associated w/word in training corpus.

General Recipe

Data: Decide notation, representation

Problem: Write down in notation

Model: Make assumptions & define
parametric model

Inference: How to search through possible
answers for best answers?

Learning: How to estimate parameters

Implementation: Engineering trade-offs for
efficient implementation.

HMM Tagger

Find tag sequence t1
n to maximize P(t1

n| w1
n).

Using Bayes’ rule:

Ignore denominator -- always same

Still too complex ...

t̂n1 = argmax P (tn1 |w
n

1)
t
n

1

t̂n1 = argmax
P (wn

1 |t
n

1)P (tn1)

P (wn

1
)t

n

1

Simplify

Assume probability of word depends only
on its own tag:

Bigram assumption:

Thus

Makes it finite state!

P (wn

1 |t
n

1) ≡
n∏

i=1

P (wi|ti)

P (tn1) ≡
n∏

i=1

P (ti|ti−1)

t̂n1 ≡ argmax

n∏

i=1

P (wi|ti)P (ti|ti−1)
t
n

1

Examples

Secretariat is expected to race tomorrow.

Consider two possible taggings for entire sentence:

Secretariat/NNP is/BEZ expected/VBZ to/TO race/
VB tomorrow/NR

Secretariat/NNP is/BEZ expected/VBZ to/TO race/
NN tomorrow/NR

If use formulas, only differ on few terms

if race is VB: P(race | VB), P(VB | TO), P(NN | VB)

if race is NN: P(race | NN) P(NN | TO), P(NN | NN)

Data from Brown Corpus

Estimate P(V | T) as C(TV)/C(T)

Tagging race as VB:

P(VB | TO) = .83

P(race | VB) = .00012

P(NR | VB) = .0027

Tagging race as NN:

P(NN | TO) = .00047

P(race | NN) = .0057

P(NR | NN) = .0012

}= .00000027

}= .00000000032

Freq w/Simplified

Tags

Bigram(Ti, Tj) Count(i, i + 1) Prob(Tj|Ti)

<s>,ART 213 0.71

<s>,N 87 0.29

ART,N 633 1

N,V 358 0.32

N,N 108 0.10

N,P 366 0.33

V,N 134 0.37

V,ART 194 0.54

P,ART 226 0.62

P,N 140 0.38

Lexical Generation

P(an | ART) 0.36

P(an | N 0.001

P(flies | N) 0.076

P(flies | V) 0.076

P(time | N) 0.0663

P(time | V) 0.012

P(arrow | N) 0.076

P(like | N) 0.012

P(like | V) 0.10

P(like | P) 0.068

Trigrams Even Better

RB (adverb) VBD (past) versus
RB VBN (past participle)

Looking two back helps with “clearly marked”

“Is clearly marked”:
 P(BEZ RB VBN) > P(BEZ RB VBD)

“He clearly marked”:
 P(PN RB VBD) > P(PN RB VBN)

Usual problems with sparse data ...

Hidden Markov

Model

Secretariat is toexpected race tomorrow

NNP BEZ VBN TO VB NR
P(x2|x1) P(x3|x2) P(x4|x3) P(x5|x4) P(x6|x5)

P(s1|x1) P(s2|x2) P(s3|x3) P(s4|x4) P(s5|x5) P(s6|x6)

All Tags at Once

HMM is probabilistic transducer: Probs
on transitions, probs of outputs on states.

Components:

Q = set of states

A = transition probability matrix, aij =
probability of going from state i to state j.

O = observations from vocabulary V

B = sequence of observation equivalences, bi(ot)
represents prob. of ot generated from state i.

q0, qF = start and final states

Hidden States

Prior Probabilities

Hidden States

Likelihood Probabilities

Find path through FST that emits all words
in sentence & maximizes probabilities.

Path gives tagging.

Harder than previous tasks as states are
hidden.

Try Greedy algorithm (always maximize as
proceed), but won’t always work!

The old man the boat.

Backtracking leads to dynamic programming

Goal

Viterbi Algorithm

Input: HMM as constructed by training
set, input sentence.

Returns tagging of sentence

Builds table w/row for each state (tag) and
column for each word of sentence.

def Viterbi(wd,HMM:(a,b)) ret best-path
 T = len(wd), N = num states of HMM
 create prob. matrix viterbi[N+1,T]

 for each state s from 1 to N do // initialize
 viterbi[s,1] = a[0,s]*b[s,wd[1]]
 backptr[s,1] = 0

 for each time step t from 2 to T do // iterate
 viterbi[s,t] = max viterbi[s’,t-1]*a[s’,s]*b[s,wd[t]]
 for s’=1 to N
 backptr[s,t] = s’ making the max

 viterbi[qF,T] = max viterbi[s’,t-1]*a[s’,s] // finalize
 for s’=1 to N
 backptr[qF,T] = s’ making the max

 return path from following backptr.

Intuition of Viterbi

Each time encounter new word go down
the column looking at each possible state

Look at paths to it from all rows of prev.
column and calculate probabilities.

Record the max and how it got there.

In final state, no word emitted, just take
max of prev column * prob of transition

Predicting weather

Jason Eisner of Johns Hopkins kept a
careful diary of how many ice cream cones
he ate every day.

Based on the diary, and his long term
records of ice cream eating, we would like
to determine the weather, based on the
number of cones he ate.

Predicting Weather

from Ice Cream

p(…|C) p(…|H) p(…|START)

p(1|…) 0.7 0.1

p(2|…) 0.2 0.2

p(3|…) 0.1 0.7

p(C|…) 0.8 0.1 0.5

p(H|…) 0.1 0.8 0.5

p(STOP|…) 0.1 0.1 0

Predictions

ice creams

weather

2 3 3 1 1

H 0.1 0.056 0.03136 0.0025088 0.000200704

C 0.1 0.008 0.00064 0.0021952 0.001229312

v[X,t+1] = MAX(v[H,t]*P(X|H),V[C,t]*P(X|C))*P(#|X)

for X = H or C

Spread sheet: icecreamPredWeather.xls

Drawbacks

Bigrams not as accurate, go with trigrams

Sparse data!

Back up to bigram or unigram if fails

Can also train to find best linear
combination.

Any Questions?

