CS 181:
NATURAL LANGUAGE
PROCESSING
Lecture 7: PoS Tagging

K1 M B RUCE
POMONA COLLEGE
SPRING 2008

Disclaimer: Slide contents borrowed from many sources on web!

PoOS TAGGERS

s Rule-Based Tagger - English Two Level

Analysis ¥ Done last time

Stochastic Tagger: Hidden Markov Model

Transformation-based Tagger

STOCHASTIC TAGGERS

Based on probability of tag occurring,
given other info.

Requires training corpus.
No probabilities for words not in corpus.
Use distinct testing corpus.

Simplest: choose most frequent tag
associated w/word in training corpus.

GENERAL RECIPE

% Data: Decide notation, representation
Problem: Write down in notation

% Model: Make assumptions & define

parametric model

Inference: How to search through possible

answers for best answers?

% Learning: How to estimate parameters

Implementation: Engineering trade-offs for

efficient implementation.

HMM TAGGER

Find tag sequence t1" to maximize P(t1"l w1").
= argmaz Pt} |w?)

s Using Bayes rule:

1T P(t}
= argmaari(i1t1)P(t)
P (wl%
s Ignore denomlnator -- always same

Still too complex ...

SIMPLIFY

Assume probability of word depends only

on its own tag:

wity) = H P(w;lt;)

Bigram assumptlon
n

Thus {7 = argma:pHP (wilt:) P(tilti—1)

3 Makes it finite state’l

EXAMPLES

% Secretariat is expected to race tomorrow.

Consider two possible taggings for entire sentence:

% Secretariat/NNP is/BEZ expected/VBZ to/TO race/
VB tomorrow/NR

Secretariat/NNP is/BEZ expected/VBZ to/TO race/
NN tomorrow/NR

If use formulas, only differ on few terms

if race is VB: P(race | VB), P(VB | TO), P(NN | VB)

% if race is NN: P(race | NN) P(NN | TO), P(NN | NN)

FREQ W/SIMPLIFIED

TAGS
Bigram(Ti, T)) | Count(i, i + 1) | Prob(TjITi)

<s>,ART 213 0.71
<s> N 87 0.29

ART,N 633 1
N,V 358 0.32
N,N 108 0.10
N,P 366 0.33
VN 134 0.37
V,ART 194 0.54
PART 226 0.62
PN 140 0.38

DATA FROM BROWN CORPUS

% Fatimate P(V1T) as C(TV)/C(T)

Tagging race as VB:

P(VBITO) - .83
& P(race | VB) =.00012 = -00000027
% P(NR I VB) =.0027

s Tagging race as NN:
P(NN | TO) =.00047
© P(race | NN) = .0057 = .00000000032

P(NRINN) =.0012

TRIGRAMS EVEN BETTER

% RB (adverb) VBD (past) vervus
RB VBN (past participle)

Looking two back helps with “clearly marked”
“Is clearly marked”:
P(BEZ RB VBN) > P(BEZ RB VBD)
“He clearly marked”:
P(PN RB VBD) > P(PN RB VBN)

#¢ Usual problems with sparse data ...

LEXICAL GENERATION

P(an | ART) 0.36
P(an I N 0.001
P(flies | N) 0.076
P(flies | V) 0.076
P(time | N) 0.0663
P(time | V) 0.012
P(arrow | N) 0.076
P(like | N) 0.012
P(like I V) 0.10
P(like | P) 0.068

HIDDEN MARKOV
MODEL

P(xz\xlm}’(xﬂxz) Pl }/_\{’(xs‘m) pwx
NNP BEZ VBN
O NG
P(ssl

x5) iP(soxe)

P(silx1) P(salx2) P(sslx3) P(salxq)

ALL TAGS AT ONCE

HMM is probabilistic transducer: Probs
on transitions, probs of outputs on states.

s Components:

¢ Q = set of states

A = transition probability matrix, a; =
probability of going from state 1 to state j.

O = observations from vocabulary V

B = sequence of observation equivalences, b;i(o)
represents prob. of o generated from state 1.

% qo, qr = start and final states

HIDDEN STATES

Figure 5.13 The Markov chain corresponding to the hidden states of the HMM. The A
transition probabilities are used to compute the prior probability.

Prior Probabilities

HIDDEN STATES

2

P(“aardvark” | TO) @

P('race” 1 TO) >

P(‘the” 1 TO)
P(*0" 1 TO)

P(‘zebra” | TO) . _&
B,

B, 3
P(“aardva:k" %) P(“aardvark” | NN)
P(race” | VB) P(race” | NN)
P(“the” | VB) P(“the” | NN)
P(0" 1 VB) P(“t0" | NN)
P(~zebra” 1 VB) P(zebra” | NN)

Figure 5.14 The B observation likelihoods for the HMM in the previous figure. Each
state (except the non-emitting Start and End states) is associated with a vector of probabil-
ities, one likelihood for each possible observation word.

Likelihood Probabilities

VITERBI ALGORITHM

Input: HMM as constructed by training
set, iInput sentence.

Returns tagging of sentence

Builds table w/row for each state (tag) and
column for each word of sentence.

GOAL

Find path through FST that emits all words

in sentence & maximizes probabilities.

Path gives tagging.

3 Harder than previous tasks as states are
hidden.

Try Greedy algorithm (always maximize as

proceed), but won't always work!

s The old man the boat.

s Backtracking leads to dynamic programming

def Viterbi(wd, HMM:(a,b)) ret best-path
T =len(wd), N = num states of HMM
create prob. matrix viterbi[N+1,T]
for each state s from 1 to N do // initialize
viterbi[s,1] = a[0,s]*b[s,wd[1]]
backptr[s,1] = 0
for each time step t from 2 to T do // iterate
viterbi[s,t] = max viterbi[s',t-1]*a[s’,s]*b[s,wd[t]]
fors’=1to N
backptr[s,t] = s’ making the max
viterbi[qr, T] = max viterbi[s',t-1]*a[s’,s] // finalize
fors'=lto N
backptr[qr, T] = s’ making the max
return path from following backptr.

INTUITION OF VITERBI PREDICTING WEATHER

#¢ Each time encounter new word go down % Jason Eisner of Johns Hopkins kept a

the column looking at each possible state . .
careful diary of how many ice cream cones

Look at paths to it from all rows of prev. he ate every day.

column and calculate probabilities. % Based on the diary, and his long term

Record the max and how it got there. records of ice cream eating, we would like

s In final state, no word emitted, just take to determine the weather, based on the
¢ | = ¢ . number of cones he ate.
max ot prev column prob of transition

PREDICTING WEATHER PREDICTIONS
FROM ICE CREAM
#ice creams
p(...IO) p(...IH) |p(...ISTART) 2 3 3 1 1
ar.) 0.7 01 weather H 01 | 0056 | 005156 | 0.0025088 | 0.000200704
p(2|m) 0'2 0'2 C 01 | 0008 | 000064 | 0.002192 | 0.001229512
p(l... . .
p(3l..) 0.1 0.7 VD £+ 1] = MAX(VTH E]*POXIH), VIC, £*P(X|C))*P(# 1X)
p(Cl...) 0.8 0.1 0.5
p(HI..) 0.1 0.8 0.5 Spread sheet: icecreamPred Weather.xls
p(STOPI...) 0.1 0.1 0
DRAWBACKS

Bigrams not as accurate, go with trigrams
3% Sparse data! ANY QUESTIONS?
Back up to bigram or unigram if fails

Can also train to find best linear
combination.

