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Disclaimer: Slide contents borrowed from many sources on web!

PoS Taggers

Rule-Based Tagger - English Two Level 
Analysis  ! Done last time

Stochastic Tagger:  Hidden Markov Model

Transformation-based Tagger

Stochastic Taggers

Based on probability of tag occurring, 
given other info.

Requires training corpus.

No probabilities for words not in corpus.

Use distinct testing corpus.

Simplest:  choose most frequent tag 
associated w/word in training corpus.

General Recipe

Data:  Decide notation, representation

Problem:  Write down in notation

Model:  Make assumptions & define 
parametric model

Inference:  How to search through possible 
answers for best answers?

Learning:  How to estimate parameters

Implementation:  Engineering trade-offs for 
efficient implementation.

HMM Tagger

Find tag sequence t1
n to maximize P(t1

n| w1
n).

 

Using Bayes’ rule:

 

Ignore denominator -- always same

Still too complex ...
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Simplify

Assume probability of word depends only 
on its own tag: 

 

Bigram assumption:

Thus 

Makes it finite state!
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Examples

Secretariat is expected to race tomorrow.

Consider two possible taggings for entire sentence:

Secretariat/NNP is/BEZ expected/VBZ to/TO race/
VB tomorrow/NR

Secretariat/NNP is/BEZ expected/VBZ to/TO race/
NN tomorrow/NR

If use formulas, only differ on few terms

if race is VB:  P(race | VB), P(VB | TO), P(NN | VB)

if race is NN:  P(race | NN) P(NN | TO), P(NN | NN)

Data from Brown Corpus

Estimate P(V | T) as C(TV)/C(T) 

Tagging race as VB:

P(VB | TO) = .83

P(race | VB) = .00012

P(NR | VB) = .0027

Tagging race as NN:

P(NN | TO) = .00047

P(race | NN) = .0057

P(NR | NN) = .0012

}= .00000027

}= .00000000032

Freq w/Simplified 

Tags

Bigram(Ti, Tj) Count(i, i + 1) Prob(Tj|Ti)

<s>,ART 213 0.71

<s>,N 87 0.29

ART,N 633 1

N,V 358 0.32

N,N 108 0.10

N,P 366 0.33

V,N 134 0.37

V,ART 194 0.54

P,ART 226 0.62

P,N 140 0.38

Lexical Generation

P(an | ART) 0.36

P(an | N 0.001

P(flies | N) 0.076

P(flies | V) 0.076

P(time | N) 0.0663

P(time | V) 0.012

P(arrow | N) 0.076

P(like | N) 0.012

P(like | V) 0.10

P(like | P) 0.068

Trigrams Even Better

RB (adverb) VBD (past) versus 
RB VBN (past participle)

Looking two back helps with “clearly marked”

“Is clearly marked”: 
         P(BEZ RB VBN) > P(BEZ RB VBD)

“He clearly marked”:
         P(PN RB VBD) > P(PN RB VBN)

Usual problems with sparse data ...

Hidden Markov 

Model

Secretariat is toexpected race tomorrow

NNP  BEZ VBN TO VB NR
P(x2|x1) P(x3|x2) P(x4|x3) P(x5|x4) P(x6|x5)

P(s1|x1) P(s2|x2) P(s3|x3) P(s4|x4) P(s5|x5) P(s6|x6)



All Tags at Once

HMM is probabilistic transducer:  Probs 
on transitions, probs of outputs on states.

Components:

Q = set of states

A = transition probability matrix, aij = 
probability of going from state i to state j.

O = observations from vocabulary V

B = sequence of observation equivalences, bi(ot) 
represents prob. of ot generated from state i.

q0, qF = start and final states

Hidden States

Prior Probabilities

Hidden States

Likelihood Probabilities

Find path through FST that emits all words 
in sentence & maximizes probabilities.  

Path gives tagging.

Harder than previous tasks as states are 
hidden.

Try Greedy algorithm (always maximize as 
proceed), but won’t always work!

The old man the boat.

Backtracking leads to dynamic programming

Goal

Viterbi Algorithm

Input:  HMM as constructed by training 
set, input sentence.

Returns tagging of sentence

Builds table w/row for each state (tag) and 
column for each word of sentence.

def Viterbi(wd,HMM:(a,b)) ret best-path
   T = len(wd), N = num states of HMM
   create prob. matrix viterbi[N+1,T]

   for each state s from 1 to N do   // initialize
      viterbi[s,1] = a[0,s]*b[s,wd[1]]
      backptr[s,1] = 0

   for each time step t from 2 to T do  // iterate
      viterbi[s,t] = max viterbi[s’,t-1]*a[s’,s]*b[s,wd[t]]
                            for s’=1 to N
      backptr[s,t] = s’ making the max

   viterbi[qF,T] = max viterbi[s’,t-1]*a[s’,s]   // finalize
                           for s’=1 to N
   backptr[qF,T] = s’ making the max

   return path from following backptr.



Intuition of Viterbi

Each time encounter new word go down 
the column looking at each possible state

Look at paths to it from all rows of prev. 
column and calculate probabilities.

Record the max and how it got there.

In final state, no word emitted, just take 
max of prev column * prob of transition

Predicting weather

Jason Eisner of Johns Hopkins kept a 
careful diary of how many ice cream cones 
he ate every day.

Based on the diary, and his long term 
records of ice cream eating, we would like 
to determine the weather, based on the 
number of cones he ate.

Predicting Weather 

from Ice Cream

p(…|C) p(…|H) p(…|START)

p(1|…) 0.7 0.1

p(2|…) 0.2 0.2

p(3|…) 0.1 0.7

p(C|…) 0.8 0.1 0.5

p(H|…) 0.1 0.8 0.5

p(STOP|…) 0.1 0.1 0

Predictions

# ice creams

weather

2 3 3 1 1

H 0.1 0.056 0.03136 0.0025088 0.000200704

C 0.1 0.008 0.00064 0.0021952 0.001229312

v[X,t+1] = MAX(v[H,t]*P(X|H),V[C,t]*P(X|C))*P(#|X)

for X = H or C

Spread sheet: icecreamPredWeather.xls  

Drawbacks

Bigrams not as accurate, go with trigrams

Sparse data!

Back up to bigram or unigram if fails

Can also train to find best linear 
combination.

Any Questions?


