CS 181: NATURAL LANGUAGE PROCESSING

Lecture 7: PoS Tagging

KIM BRUCE POMONA COLLEGE SPRING 2008

Disclaimer: Slide contents borrowed from many sources on web!

PoS TAGGERS

- Rule-Based Tagger English Two Level Analysis *Done last time*
- Stochastic Tagger: Hidden Markov Model
- Transformation-based Tagger

STOCHASTIC TAGGERS

- Based on probability of tag occurring, given other info.
- Requires training corpus.
- No probabilities for words not in corpus.
- * Use distinct testing corpus.
- Simplest: choose most frequent tag associated w/word in training corpus.

GENERAL RECIPE

- Data: Decide notation, representation
- Problem: Write down in notation
- Model: Make assumptions & define parametric model
- Inference: How to search through possible answers for best answers?
- Learning: How to estimate parameters
- Implementation: Engineering trade-offs for efficient implementation.

HMM TAGGER

* Find tag sequence t_1^n to maximize $P(t_1^n|w_1^n)$.

 $\hat{t}_1^n = argmax P(t_1^n | w_1^n)$ \$\$\$\$ Using Bayes' rule:

$$\hat{t}_1^n = argmax \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n | t_1^n)}$$

- $t_1 = \underset{t_1}{\operatorname{argmax}} \underbrace{P(w_1^n)}_{P(w_1^n)}$ \circledast Ignore denominator -- always same
- Still too complex ...

SIMPLIFY

Assume probability of word depends only on its own tag:

$$P(w_1^n|t_1^n) \equiv \prod_{i=1}^n P(w_i|t_i)$$

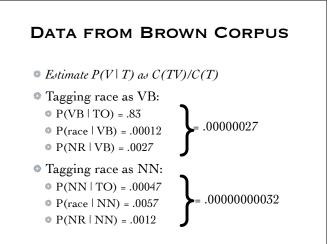
Bigram assumption:
$$P(t_i^n) = \prod_{i=1}^n P(t_i|t_{i-1})$$

Thus
$$\hat{t}_1^n \equiv \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i|t_i)P(t_i|t_{i-1})$$

Makes it finite state!

EXAMPLES

- Secretariat is expected to race tomorrow.
- Consider two possible taggings for entire sentence:
 - Secretariat/NNP is/BEZ expected/VBZ to/TO race/ VB tomorrow/NR
 - Secretariat/NNP is/BEZ expected/VBZ to/TO race/ NN tomorrow/NR
- If use formulas, only differ on few terms
 - if race is VB: P(race | VB), P(VB | TO), P(NN | VB)
 - if race is NN: P(race | NN) P(NN | TO), P(NN | NN)



FREQ W/SIMPLIFIED					
TAGS					

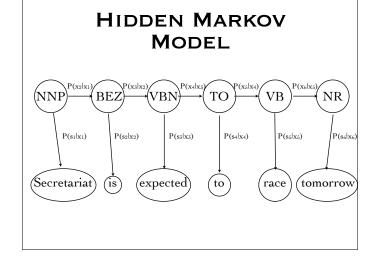
Bigram(Ti, Tj)	Count(i, i + 1)	Prob(Tj Ti)
<s>,ART</s>	213	0.71
<s>,N</s>	87	0.29
ART,N	633	1
N,V	358	0.32
N,N	108	0.10
N,P	366	0.33
V,N	134	0.37
V,ART	194	0.54
P,ART	226	0.62
P,N	140	0.38

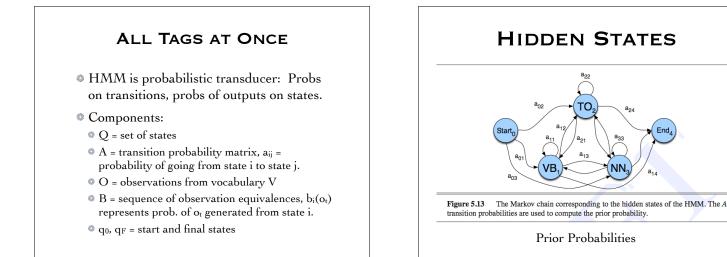
LEXICAL GENERATION

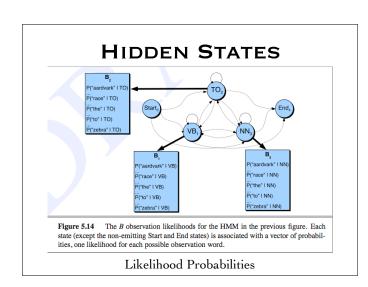
0.36
0.001
0.076
0.076
0.0663
0.012
0.076
0.012
0.10
0.068

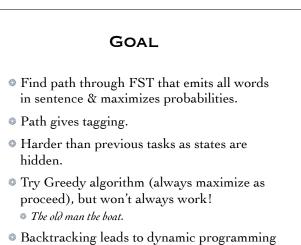
TRIGRAMS EVEN BETTER

- RB (adverb) VBD (past) versus
 RB VBN (past participle)
- Looking two back helps with "clearly marked"
 - "Is clearly marked": P(BEZ RB VBN) > P(BEZ RB VBD)
 - "He clearly marked": P(PN RB VBD) > P(PN RB VBN)
- Usual problems with sparse data ...









VITERBI ALGORITHM Input: HMM as constructed by training set, input sentence. Returns tagging of sentence Builds table w/row for each state (tag) and column for each word of sentence.

def Viterbi(wd,HMM:(a,b)) ret best-path
T = len(wd), N = num states of HMM
create prob. matrix viterbi[N+1,T]
for each state s from 1 to N do // initialize
viterbi[s,1] = a[0,s]*b[s,wd[1]]
backptr[s,1] = 0
for each time step t from 2 to T do // iterate
viterbi[s,t] = max viterbi[s',t-1]*a[s',s]*b[s,wd[t]]
for s'=1 to N
backptr[s,t] = s' making the max
viterbi[qF,T] = max viterbi[s',t-1]*a[s',s] // finalize
for s'=1 to N
backptr[qF,T] = s' making the max
return path from following backptr.

INTUITION OF VITERBI

- Each time encounter new word go down the column looking at each possible state
- Look at paths to it from all rows of prev. column and calculate probabilities.
- Record the max and how it got there.
- In final state, no word emitted, just take max of prev column * prob of transition

PREDICTING WEATHER

- Jason Eisner of Johns Hopkins kept a careful diary of how many ice cream cones he ate every day.
- Based on the diary, and his long term records of ice cream eating, we would like to determine the weather, based on the number of cones he ate.

PREDICTING WEATHER FROM ICE CREAM

	p(C)	p(H)	p(START)
p(1)	0.7	0.1	
p(2)	0.2	0.2	
p(3)	0.1	0.7	
p(C)	0.8	0.1	0.5
p(Hl)	0.1	0.8	0.5
p(STOP)	0.1	0.1	0

PREDICTIONS

	# ice creams							
		2	3	3	1	1		
weather	Н	0.1	0.056	0.03136	0.0025088	0.000200704		
	С	0.1	0.008	0.00064	0.0021952	0.001229312		
v[X,t+1] = MAX(v[H,t]*P(X H),V[C,t]*P(X C))*P(# X) for X = H or C								
Spread sheet: icecreamPredWeather.xls								

DRAWBACKS

- Bigrams not as accurate, go with trigrams
- Sparse data!
- Back up to bigram or unigram if fails
- Can also train to find best linear combination.

