
Lecture 20:
Parser Combinators &

Program Units

CSCI 131
Spring, 2011

Kim Bruce

Pointers

• Pointers have been lumped with the goto
statement as a marvelous way to create
impossible to understand programs

- K & R, C Programming Language

• Problems

- Dangling pointers -- leave pointer to recycled space

• stack frame popped or recycled heap item

- Dereference nil pointers or other illegal address

- Unreachable garbage

- in C: p+1 different from (int)p + 1

More Scala

We’re ahead of sy!abus!

Scala & Parsing

• Scala provide parser combinators

- Operators that allow you to glue together parsers

- “|” is alternative, “~” is concatenation

• def factor = "(" ~ expr ~ ")" | numericLit

• def multOp = ("*" | "/")

• def term = (factor ~ multOp ~ term | factor)

• def addOp = ("+" | "-")

• def expr = (term ~ addOp ~ expr | term)

Adding Actions

• ^^ {...} represents action to take with result.

- def term : Parser[Int] = (
 factor ~ "*" ~ term ^^ { case x ~ "*" ~ y => x * y } |
 factor ~ "/" ~ term ^^ { case x ~ "/" ~ y => x / y } |
 factor)

- Type says result is an Int

- If x is result of factor, “*” is just “*”, y is result of term,
then return x * y.

• See code for interpreter in ArithParser.scala

What’s Wrong With
Grammar?

• Right recursive -- how does that affect answer?

• We can fix it by using our grammar for
arithmetic expressions.

• Introduces new operations

- “*” for 0 or more repetitions -- gives list as result

- a ~> b means recognize a then b, but then throw
result of a away if at beginning of result

- a <~ b means recognize a then b, but then throw
results of b away if at end of result

See ArithParserBuild.scala
Program Units &

Activation Records

Program Units

• Separate segments of code allowing separate
declarations of variables

- Ex.: procedures, functions, methods, blocks

- During execution represented by unit instance

• fixed code segment

• activation record with “fixed” ways of accessing items

Activation Record Structure

• Return address

• Access info on parameters (how?)

• Space for local vbles

• How get access to non-local variables?

Invoking Function

• Make parameters available to callee

- E.g., put on stack or in registers

• Save state of caller (registers, prog. counter)

• Ensure callee knows where to return

• Enter callee at first instruction

Returning from Function

• If function, leave result in accessible location

• Get return address and transfer execution

• Caller restores state

