Mocture 8:
More Parsing fotypes
CSC i3ı
Fall, 2012
Kim Bruce

Top combined

I. Java *	ır.Perl*
2. JavaScript *	12.Scala
3. PHP *	13.Assembly
4.Python*	14.Haskell
5. Ruby *	15.ASP
6.C\#*	16.R
7. C++*	17.CoffeeScript
8. C*	18.Groovy
9.Objective-C*	19.Matlab
ıo.Shell *	20.Visual Basic

http://redmonk.com/sogrady/2013/07/25/language-rankings-6-13/

Rewrite Grammar

```
        <exp> ::= <term> <termTail>
    <termTail> ::= <addop> <term> <termTail>
        | \varepsilon
        <term> ::= <factor> <factorTail>
```

```
<factorTail> ::= <mulop> <factor> <factorTail> (5)
            | \varepsilon
    <factor> ::= ( <exp> ) (7)
            | NUM (8)
            | ID
    <addop> ::= + | -
<mulop> ::= * | /
No left recursion
How do we know which production to take?
```(2)
(4)(7)
 (9)

\section*{FIRST}
- Intuition: \(\mathrm{b} \in \operatorname{First}(\mathrm{X})\) iff there is a derivation \(X \rightarrow *\) b \(\omega\) for some \(\omega\).
- Intuition: A terminal \(\mathrm{b} \in\) Follow \((\mathrm{X})\) iff there is a derivation \(\mathrm{S} \rightarrow{ }^{*} \mathrm{vXb} \omega\) for some v and \(\omega\).

\section*{Predictive Parsing}

Goal: \(\mathrm{a}_{\mathrm{r}} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{n}}\)
\[
\begin{aligned}
& \mathrm{S} \rightarrow \alpha \\
& \quad \ldots \\
& \rightarrow \mathrm{a}_{1} \mathrm{a}_{2} \mathrm{X} \beta
\end{aligned}
\]

Want next terminal character derived to be \(\mathrm{a}_{3}\)
Need to apply a production \(\mathrm{X}::=\gamma\) where
I) \(\gamma\) can eventually derive a string starting with \(a_{3}\) or
2) If \(X\) can derive the empty string, then see if \(\beta\) can derive a string starting with \(\mathrm{a}_{3}\).

\section*{First for Arithmetic}
```

FIRST(<addop>) ={+,-}
FIRST(<mulop>) = {*,/}
FIRST(<factor>) = {(, NUM, ID }
FIRST(<term>) = {(, NUM, ID }
FIRST(<exp>) = {(, NUM, ID }
FIRST(<termTail>) ={+, -, \varepsilon}
FIRST(<factorTail>) = {*,/, \varepsilon}

```

\section*{Follow for Arithmetic}
calculate for
<termTail>, <factorTail>
FOLLOW \((<\) termTail \(>)=\) FOLLOW \((<\exp >)=\{\) EOF, \()\}\)
FOLLOW \((<\) term \(>)=\operatorname{FIRST}(<\) termTail \(>) \cup\)
FOLLOW (<exp>) \(\cup\) FOLLOW(<termTail \(>\))
\(=\{+,-, \mathrm{EOF})\),
FOLLOW (<factorTail>) \(=\{+,-\), EOF, \()\}\)
FOLLOW \((<\) factor \()=\{\) *, /, +, -, EOF \(\}\)
FOLLOW (<addop>) \(=\{(, N U M, I D\}\)
FOLLOW \((<\) mulop \(\rangle)=\{(, N U M, I D\}\)

\section*{Need Unambiguous}
- No table entry should have more than one production to ensure unambiguous.
- Laws of predictive parsing:
- If \(A::=\alpha_{I}|\ldots| \alpha_{n}\) then for all \(\mathrm{i} \neq \mathrm{j}\),
\(\operatorname{First}\left(\alpha_{i}\right) \cap \operatorname{First}\left(\alpha_{j}\right)=\varnothing\).
- If \(X \rightarrow{ }^{*} \varepsilon\), then \(\operatorname{First}(X) \cap \operatorname{Follow}(X)=\varnothing\).

\section*{Building Table}
- Put \(\mathrm{X}::=\alpha\) in entry (\(\mathrm{X}, \mathrm{a}\)) if either
- a in First(\(\alpha\)), or
- e in First \((\alpha)\) and a in Follow(X)
- Consequence: \(\mathrm{X}::=\alpha\) in entry (\(\mathrm{X}, \mathrm{a}\)) iff there is a derivation s.t. applying production can eventually lead to string starting with a.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{See ParseArith.bs} \\
\hline Non- & ID & NUM & Addop & Mulop & (&) & EOF \\
\hline <exp> & I & I & & & I & & \\
\hline ctermTais & & & 2 & & & 3 & 3 \\
\hline <term & 4 & 4 & & & 4 & & \\
\hline \({ }_{\text {SfactTails }}\) & & & 6 & 5 & & 6 & 6 \\
\hline factors & 9 & 8 & & & 7 & & \\
\hline <addop> & & & IO & & & & \\
\hline <mulop> & & & & II & & & \\
\hline \multicolumn{8}{|c|}{Read off from table which production to apply!} \\
\hline
\end{tabular}

\section*{Alternatives to Recursive Descent Parsers}

\section*{Another alternative}
- LR(I) parsers -- bottom up, gives right-most derivation. Also stack-based.
- YACC is \(\operatorname{LR}(\mathrm{r})\). ANTLR is LL(r).
- k in \(\mathrm{LL}(\mathrm{k})\) and \(\mathrm{LR}(\mathrm{k})\) indicates how many letters of look ahead are necessary -- e.g. length of strings in columns of table.
- Compiler writers are happiest with \(\mathrm{k}=\mathrm{I}\) to avoid exponential blow-up of table. May have to rewrite grammars.

\section*{Table-Driven Stack-based Parser}
- http://en.wikipedia.org/wiki/LL_parser
- Start with "S \$" on stack and "input \$" to be recognized.
- Use table to replace non-terminals on top of stack.
- If terminal on top of stack matches next input then erase both and proceed.
- Success if end up clearing stack and input
- Show with ID *(NUM + NUM)\$

\section*{More Options}
- Parser Combinators
- Domain specific language for parsing.
- Even easier to tie to grammar than recursive descent
- Build into Haskell and Scala, definable elsewhere
- Talk about when cover Scala

\section*{Parser Combinators in Scala}

Syntax tree building code
```

def multOp = ("*" | "/")
def addOp = ("+" | "-")
def factor = "(" > expr < " ")" numqricLit ^^{...}
def term = factor ~ (factorTail*) ^^{..}
def factorTail = multOp - factor ^^{...}
def expr = term ~ (termTail*)^{...}
def termTail = addOp ~ term ^^...}

```

See Haskell Recursive Descent
Parser, Parse Arith.bs on web page

\section*{Why (Static) Types?}
- Increase readability
- Hide representation
- Detection of errors.
- Help disambiguate operators
- Compiler optimization. E.g. know where fields of record/struct are.
- Help ensure different components in separately compiled units will interoperate properly

\section*{Types \& Constructors}
- Built-in types - primitive types (incl. size)
- Aggregate types
- Mapping types
- Recursive types
- Sequence types - files and strings (primitive?)
- User-defined types

\section*{Aggregate Types}
- Cartesian products (tuples)
- Records / Structs
- Union Types
- C: typedef union \{int i; float r; utype
- unsafe
- Discriminated union safer
- Haskell type defs safe

\section*{Mappings}
- Arrays
- Static - location do size frozen at compile time (FORTRAN)
- Semi-static - size bound at compile time, location at invocation (Pascal, C)
- Dynamic - size and location bound at creation (ALGOL 60, Ada, Java)
- Flex - size and location can be changed any time (Java vectors)
- Function Types - update less efficient
- update \(\mathrm{f} \arg \mathrm{nuVal}=\mathrm{fn} \mathrm{x}=>\) if \(\mathrm{x}=\arg\) then nuVal else f x

\section*{Recursive Types}
- In Haskell: data List = Nil| Cons (Integer, List)
- In C: struct list \{ int x; list *next; \};
- Solutions to: list \(=\{\) Nil \(\} \cup\) (int \(\times\) list)
A. finite seqs of ints followed by Nil: e.g., (\(2,(5, \mathrm{Nil})\))
B. finite or infinite seqs: if finite then end w/ Nil
- Recursive eqn's always have a least solution
- least fixed point!

\section*{User-Defined Types}
- Named types
- More readable
- Easy to modify if localized
- Factorization (why repeat same def?)
- Added consistency checking if generative
- Enumeration types added to Java 5

\section*{Least Recursive Solutions}
```

listo = {Nil}
list}\mp@subsup{|}{1}{}={Nil}\cup(\mathrm{ int }\times\mp@subsup{listo}{0}{}
={Nil}\cup{(n,Nil)|n\inint}
list}\mp@subsup{\mp@code{2}}{2}{={Nil}\cup(int }\timeslis\mp@subsup{t}{1}{}
= {Nil}\cup{(n,Nil)|n\inint}\cup{(m,(n,Nil))|m,n\inint}
list = U \ listn

```

Some solutions inconsistent w/classical math!```

