Programming Language Ranking

Redhork Q3 Programming Language Rankings

Lecture §:
More Parsing & Types i

AutoHotey
Sandard ML

CSC 131
Fall, 2012

Kim Bruce

SuperColider

Gosu

Common Lisp

T bined Tiobe Index
:::::’1"3 :::::1"2 Delta in Position | Programming Language ;1";::3 s:::: o | Status

% * 1 1 c 16.975% | 232% | A

L. Java II.PCI'I 2 2 Java 16.154% | 0.11% | A

2. JavaScript * 12.Scala s [¢ I EE sooen | 04o% [&
4 3 Objective-C 8.561% -1.21% A SCala #42

.PHP * 12.Assembl 5 6 [} PHP 6430% | +0.82% | A

3 3 y 6 5 [c# 5564% | -1.03% | A Haskell #46

4. Python * I4.HaSk€ll 7 7 (Visual) Basic 4837% | 069% | A I\éL ;:48
0 #49

% 8 8 Python 3.169% | -069% | A

5' Ruby ISASP 9 1 it JavaScript 2015% | +069% | A

* 10 14 1t Transact-SQL 1997% | +1.12% | A

6.C# 16.R 1 15 Tt | VisuaiBasic NET 1844% | +100% | A

Ces * 1 .COﬂ:CCSCI‘i t 12 9 [11) Perl 1692% | 057% | A

7 7 p 13 10 [IT] Ruby 1382% | 034% | A

8. C * 18.G1'00Vy 14 12 [1} Delphi/Object Pascal 0.897% | -0.10% | A-

15 16 [} Pascal 0.888% | +0.06% | A

9. Objective-c * 19.Matlab 16 13 [TT] Lisp 0.770% | 020% | A

17 19 it PL/SQL 0676% | +0.07% | A-

IO.Shell * 20.Visual Basic 18 24 IR 0646% | +021% | B

19 20 [MATLAB 0639% | +0.08% | B

20 25 1111t [cosoL 0628% | +0.20% | B

http://redmonk.com/sogrady/2013/07/25/language-rankings-6-13/

Rewrite Grammar

<term> <termTail>

<addop> <term> <termTail>
3

<factor> <factorTail>

<exp> ::
<termTail> ::

<term> ::
<factorTail> ::= <mulop> <factor> <factorTail>

€

|
<factor> ::= (<exp>)

| NUM

| 1D
<addop> ::= + | -
<mulop> ::= * | /

No left recursion
How do we know which production to take?

(1)
(2)
(3)
(4)
(35)
(6)
(7)
(8)
(9)
(10)
(11)

Predictive Parsing

Goal: a;a,...a,
S—a

— a2, X[}

Want next terminal character derived to be a,
a; in First(y)
Need to apply a production X ::= y where
1) Y can eventually derive a string starting with a; or
2) If X can derive the empty string, then see
if P can derive a string starting with a,.

a; in Follow(X)

FIRST

o Intustion: b € First(X) iff there is a derivation
X —=* bw for some .

o Intuition: A terminal b € Follow(X) iff there is a
derivation S —=* vXbw for some v and w.

First for Arithmetic

FIRST(<addop>) ={ +, -}
FIRST(<mulop>) = {*,/}
FIRST(<factor>) = { (, NUM, ID }
FIRST(<term>) = { (NUM, ID }
FIRST(<exp>) = { (NUM, ID }
FIRST(<termTail>) = { +, -, € }
FIRST(<factorTail>) ={*, /, €}

FOIIOW for Ar lthmetl%nly needed to

/ calculate for
FOLLOW/(<exp>) ={ EOF,) }

<termTail>,
FOLLOW /(<termTail>) = FQ W (<exp>) ={ EOF,) }

<factorluil>!
FOLLOW/(<term>) = FIRST(<termTail>) U
FOLLOW /(<exp>) U FOLLOW (<termTail>)

={+ -, EOF,)}

FOLLOW /(<factorTail>) = { +, -, EOF,) }
FOLLOW (<factor>) = {*,/, +, -, EOF }
FOLLOW (<addop>) = { (NUM, ID } } Not needed!
FOLLOW (<mulop>) = { (NUM, ID }

Building Table

e Put X := a in entry (X,a) if either

- a in First(a), or

- e in First(a) and a in Follow(X)

* Consequence: X ::= a in entry (X,a) iff there is

a derivation s.t. applying production can
eventually lead to string starting with a.

Need Unambiguous

 No table entry should have more than one
production to ensure unambiguous.

e Laws of predictive parsing:

- If A= o, | ..l an then for all i #,
First(a) N First(oy) = S.

- If X —=* ¢, then First(X) N Follow(X) = &.

See Parse Arith.bs

Now | ID | NUM | Addop | Mulop| (|) | EOF
<exp> I I I

<termTail> 5 3 3
<terme> 4 4 4

<fact Tuils 6 5 6 5
<factor> 9 8 7
<addop> 10
<mulop> 11

Read off from table which production to apply!

Alternatives to Recursive Descent
Parsers

Table-Driven Stack-based Parser

* http://en.wikipedia.org/wiki/LL_parser

e Start with “S $” on stack and “input $” to be
recognized.

e Use table to replace non-terminals on top of
stack.

e If terminal on top of stack matches next input
then erase both and proceed.

e Success if end up clearing stack and input

e Show with ID * (NUM + NUM)$

Another alternative

e LR(1) parsers -- bottom up, gives right-most
derivation. Also stack-based.

* YACC is LR(1). ANTLR is LL(1).

e k in LL(k) and LR(k) indicates how many
letters of look ahead are necessary -- e.g. length
of strings in columns of table.

e Compiler writers are happiest with k=1 to avoid
exponential blow-up of table. May have to
rewrite grammars.

More Options

e Parser Combinators
- Domain specific language for parsing.
- Even easier to tie to grammar than recursive descent

- Build into Haskell and Scala, definable elsewhere

e Talk about when cover Scala

Parser Combinators in Scala

Syntax tree building code

def multOp = ("*" | "/") mitted

def addOp = ("+" | "-") .
See Haskell Recursive Descent

Parser, Parse Arith.bs on web page

def factor = "(" -> expr <-)" | numericLit ** {...}
def term = factor - (factorTail®) ** {.:}}

def factorTail = multOp - factor *{...}

def expr = term - (termTail*) ** {...}

def termTail = addOp - term “*{...}

Why (Static) Types?

e Increase readability
e Hide representation
e Detection of errors.
Types

e Help disambiguate operators

* Compiler optimization. E.g. know where fields
of record/struct are.

e Help ensure different components in separately
compiled units will interoperate properly

Types & Constructors

e Built-in types - primitive types (incl. size)

e Aggregate types

e Mapping types

* Recursive types

e Sequence types - files and strings (primitive?)

* User-defined types

Aggregate Types

e Cartesian products (tuples)
® Records / Structs

* Union Types
- C: typedef union {int i; float r;} utype
- unsafe
- Discriminated union safer

- Haskell type defs safe

Discriminated Union: Ada

type geometric (Kind: (Triangle, Square) := Square) is
record
color : ColorType := Red ;

case Kind of / ind is tag
when Triangle =
ptL,pt2,pt3:Point;

when Square =>
upperleft : Point;
length : INTEGER range 1..100;
end case;
end record;

obr : geometric -- default is Square
ob2 : geometric(Triangle) -- frozen, can't be changed

Mappings

e Arrays
- Static - location & size frozen at compile time FORTRAN)

- Semi-static - size bound at compile time, location at invocation
(Pascal, C)

- Dynamic - size and location bound at creation (ALGOL 60, Ada,
Java)

- Flex - size and location can be changed any time (Java vectors)

e Function Types - update less efficient

- update f arg nuVal = fn x => if x = arg then nuVal else f x

Recursive Types

¢ In Haskell: data List = Nil | Cons (Integer, List)
¢ In C: struct list { int x; list *next; };

e Solutions to: list = { Nil } U (int x list)
A. finite seqs of ints followed by Nil: e.g., (2,(5,Nil))

B. finite or infinite seqs: if finite then end w/ Nil

e Recursive eqn’s always have a least solution

- least fixed point!

User-Defined Types

e Named types
- More readable
- Easy to modify if localized
- Factorization (why repeat same def?)

- Added consistency checking if generative

e Enumeration types added to Java §

liSto
liStl

liStQ

list

Least Recursive Solutions

= {Nil}

= {Nil} U (int x listy)

= {Nil} U{(n,Nil)|n € int}

= {Nil} U (int x listy)

= {Nil} U{(n, Nil)|n € int} U {(m, (n, Nil))|m,n € int}

=, listy

Some solutions inconsistent w/classical math!

