
Lecture 8:
More Parsing & Types

CSC 131
Fall, 2012

Kim Bruce

Programming Language Ranking

Top combined
1. Java *
2. JavaScript *
3. PHP *
4.Python *
5. Ruby *
6.C# *
7. C++ *
8.C *
9.Objective-C *
10.Shell *

11.Perl *
12.Scala
13.Assembly
14.Haskell
15.ASP
16.R
17.CoffeeScript
18.Groovy
19.Matlab
20.Visual Basic

http://redmonk.com/sogrady/2013/07/25/language-rankings-6-13/

Tiobe Index

Scala #42
 Haskell #46

ML #48
Go #49

Rewrite Grammar
 <exp> ::= <term> <termTail> (1)

 <termTail> ::= <addop> <term> <termTail> (2)

 | ε (3)
 <term> ::= <factor> <factorTail> (4)

 <factorTail> ::= <mulop> <factor> <factorTail> (5)

 | ε (6)
 <factor> ::= (<exp>) (7)

 | NUM (8)

 | ID (9)

 <addop> ::= + | - (10)

 <mulop> ::= * | / (11)

No le! recursion
How do we know which production to take?

Predictive Parsing
Goal: a1a2...an

S → α
 ...
 → a1a2Xβ

Want next terminal character derived to be a3

Need to apply a production X ::= γ where
 1) γ can eventually derive a string starting with a3 or
 2) If X can derive the empty string, then see
 if β can derive a string starting with a3.

a3 in First(γ)

a3 in Fo$ow(X)

FIRST

• Intuition: b ∈ First(X) iff there is a derivation
 X →* bω for some ω.

• Intuition: A terminal b ∈ Follow(X) iff there is a
derivation S →* vXbω for some v and ω.

First for Arithmetic

FIRST(<addop>) = { +, - }
FIRST(<mulop>) = { *, / }
FIRST(<factor>) = { (, NUM, ID }
FIRST(<term>) = { (, NUM, ID }
FIRST(<exp>) = { (, NUM, ID }
FIRST(<termTail>) = { +, -, ε }
FIRST(<factorTail>) = { *, /, ε }

Follow for Arithmetic

 FOLLOW(<exp>) = { EOF,) }
 FOLLOW(<termTail>) = FOLLOW(<exp>) = { EOF,) }
 FOLLOW(<term>) = FIRST(<termTail>) ∪
 FOLLOW(<exp>) ∪ FOLLOW(<termTail>)
 = { +, -, EOF,) }
FOLLOW(<factorTail>) = { +, -, EOF,) }
 FOLLOW(<factor>) = { *, /, +, -, EOF }
 FOLLOW(<addop>) = { (, NUM, ID } Not needed!
 FOLLOW(<mulop>) = { (, NUM, ID } }

Only needed to
calculate for
<termTail>,
<factorTail> !

Building Table

• Put X ::= α in entry (X,a) if either
- a in First(α), or

- e in First(α) and a in Follow(X)

• Consequence: X ::= α in entry (X,a) iff there is
a derivation s.t. applying production can
eventually lead to string starting with a.

Need Unambiguous

• No table entry should have more than one
production to ensure unambiguous.

• Laws of predictive parsing:
- If A ::= α1 | ...| αn then for all i̸≠ j,

First(αi) ∩ First(αj) = ∅.

- If X →* ε, then First(X) ∩ Follow(X) = ∅.

Non-
terminals

ID NUM Addop Mulop () EOF

<exp>

<termTail>

<term>

<factTail>

<factor>

<addop>

<mulop>

1 1 1

2 3 3

4 4 4

6 5 6 6

9 8 7

10

11

Read off)om table which production to apply!

See ParseArith.hs

Alternatives to Recursive Descent
Parsers

Table-Driven Stack-based Parser
• http://en.wikipedia.org/wiki/LL_parser

• Start with “S $” on stack and “input $” to be
recognized.

• Use table to replace non-terminals on top of
stack.

• If terminal on top of stack matches next input
then erase both and proceed.

• Success if end up clearing stack and input

• Show with ID * (NUM + NUM)$

Another alternative

• LR(1) parsers -- bottom up, gives right-most
derivation. Also stack-based.

• YACC is LR(1). ANTLR is LL(1).

• k in LL(k) and LR(k) indicates how many
letters of look ahead are necessary -- e.g. length
of strings in columns of table.

• Compiler writers are happiest with k=1 to avoid
exponential blow-up of table. May have to
rewrite grammars.

More Options

• Parser Combinators
- Domain specific language for parsing.

- Even easier to tie to grammar than recursive descent

- Build into Haskell and Scala, definable elsewhere
• Talk about when cover Scala

Parser Combinators in Scala

def multOp = ("*" | "/")

def addOp = ("+" | "-")

def factor = "(" ~> expr <~ ")" | numericLit ^^ {...}

def term = factor ~ (factorTail*) ^^ {...}

def factorTail = multOp ~ factor ^^{...}

def expr = term ~ (termTail*) ^^ {...}

def termTail = addOp ~ term ^^{...}

Syntax tree building code
omitted

See Haske" Recursive Descent
Parser, ParseArith.hs on web page

Types

Why (Static) Types?
• Increase readability

• Hide representation

• Detection of errors.

• Help disambiguate operators

• Compiler optimization. E.g. know where fields
of record/struct are.

• Help ensure different components in separately
compiled units will interoperate properly

Types & Constructors

• Built-in types - primitive types (incl. size)

• Aggregate types

• Mapping types

• Recursive types

• Sequence types - files and strings (primitive?)

• User-defined types

Aggregate Types

• Cartesian products (tuples)

• Records / Structs

• Union Types
- C: typedef union {int i; float r;} utype

- unsafe

- Discriminated union safer

- Haskell type defs safe

Discriminated Union: Ada
type geometric (Kind: (Triangle, Square) := Square) is
 record
 color : ColorType := Red ;
 case Kind of
 when Triangle =>
 pt1,pt2,pt3:Point;
 when Square =>
 upperleft : Point;
 length : INTEGER range 1..100;
 end case;
 end record;

ob1 : geometric -- default is Square
ob2 : geometric(Triangle) -- frozen, can't be changed

Kind is tag

Mappings
• Arrays
- Static - location & size)ozen at compile time (FORTRAN)

- Semi-static - size bound at compile time, location at invocation
(Pascal, C)

- Dynamic - size and location bound at creation (ALGOL 60, Ada,
Java)

- Flex - size and location can be changed any time (Java vectors)

• Function Types - update less efficient
- update f arg nuVal = fn x => if x = arg then nuVal else f x

Recursive Types

• In Haskell: data List = Nil | Cons (Integer, List)

• In C: struct list { int x; list *next; };

• Solutions to: list = { Nil } ∪ (int × list)
A. finite seqs of ints followed by Nil: e.g., (2,(5,Nil))

B. finite or infinite seqs: if finite then end w/ Nil

• Recursive eqn’s always have a least solution
- least fixed point!

Least Recursive Solutions

list0 = {Nil}
list1 = {Nil} ∪ (int × list0)

= {Nil} ∪ {(n, Nil)|n ∈ int}
list2 = {Nil} ∪ (int × list1)

= {Nil} ∪ {(n, Nil)|n ∈ int} ∪ {(m, (n, Nil))|m, n ∈ int}
...

list =
⋃

n
listn

Some solutions inconsistent w/classical math!

User-Defined Types

• Named types
- More readable

- Easy to modify if localized

- Factorization (why repeat same def?)

- Added consistency checking if generative

• Enumeration types added to Java 5

