Java Design Goals

Portability across platforms

Reliability (code run on another computer)

Lecture 21: Java & Eiffel

Safety (no viruses!)

CSC 131

Dynamic Linking (change on the fly)

Kim Bruce Multithreaded execution (not ad hoc, part of language)

Simplicity and Familiarity (C syntax, alas!)

Efficiency (least important)

Portability JVML

o: iconst_2 19: ifne 25
e Compiled to Java Byte code VML) and then run I istore_r 22: goto 38
2: iload_1 25: iinc 2,1
3: sipush 1000 28: goto 11
outer: 6: if_icmpge 44 31: getstatic #84; ...
for (int i = 2; i < 1000; i++) { 9: iconst_2 34: iload_1
.. ... 10: istore_2 35: invokevirtual #8s; ...
for (int j = 2; j < i; j++) { 1: iload_2 38: dinc 1,1
if0% j==0) — 12: iload_x 4T: goto 2
continue outer; 13: if_icmpge 31 44: return
16: iload_1
} 17: iload_2
System.out.println (i); 18: irem

}




Java
e Original implementations slow
- Compiled to JVML and then interpreted
- Now JIT
- Garbage collection
e Safety - 3 levels:
- Strongly typed
- JVML bytecode also checked before execution

- Run-time checks for array bounds, etc.

e Other safety features:
- No pointer arithmetic, unchecked type casts, etc.

- Super constructor called at beginning of constructor

Exceptions & Subtyping

e All non-Runtime exceptions must be caught or
declared in “throws” clauses

- void method readFilesO throws IOException {...}
e Suppose m throws NewException.

e What are restrictions on throwing exceptions
if m overridden in subclass? Masquerade!

Simplify from C++

e Purely OO language (except for primitives)

e All objects accessed through pointers

- reference semantics
e No multiple inheritance -- trade for interfaces
* No operator overloading
* No manual memory management

¢ No automatic or unchecked conversions

Interfaces

e Originally introduced to replace multiple
inheritance

interface Comparable ({

boolean equal(Object other);
boolean lessThan(Object other);



Interfaces Encapsulation

* Classes & interfaces can belong to packages:

package MyPackage;
e Allows pure use of subtype polymorphism w/ public class C ...

out confusing with implementation reuse.

* If no explicit package then in “default” package
e public sort(Comparable[] elts) {...}

) ¢ public, protected, private, “package” visibili
e Slower access to methods as method order in p P » P » P 8 ty

vtable not guaranteed * Class-based privacy (not object-based):

- If method has parameter of same type then get access
to privates of parameter

Abstraction barriers not monotonic
Problems w/Packages packase #;

public class Fst {
° : : void m(int k){System.out.println("Fst m: "+k);}

Generally tled to dII'CCtOI'y structure. public void n(){System.out.print("Fst n: "); m(3);}
}

e Anyone can add to package and get privileged .
package B;

access import A.*;

public class Snd extends Fst({
: : public void m(int k) {System.out.println("Snd m: "+k);}

e All classes/interfaces w/out named package in Pblic void p() (System out. moint:"ond bt "ys m(5):)

default package (so all have access to each }

|

Other') package A;

import B.*;

public class Third extends Snd{

o e
NO eXphCIt lnterface fOI' paCkage public void m(int k) {System.out.println("Third m: "+k);}

}
e Abstraction barriers not possible for interfaces.

Discourages use of interfaces for classes.




Abstraction barriers not monotonic

import A.*;
import B.*;
public class Fourth{
public static void main(String[] args){
Fst fst = new Fst();

fst.n(); Fstn: Fstm: 3

Snd snd = new Snd();

snd.n(); Estn: Fstm:3 // 2222
snd.m(5); Snd m: 5

Third third = new Third();

Fst n: Third m: 3

third.n();
third.m(7); Thirdm: 7
third.p(); Snd p: Third m: §

}
}

The method Snd.m(int) does not override the inherited method from
Fst since it is private to a different package

Goals of Java §

e Ease of Development

- Increased Expressiveness

- Increased Safety
o Scalability and Performance
o Monitoring and Manageability
® Desktop client
e Minimize Incompatibility
- No changes to virtual machine

- Only one new keyword (enum)

Java g

* Generics

* Enhanced for loop (w/iterators)

* Auto-boxing and unboxing of primitive types
* Type-safe enumerated types

* Static Import

* Simpler I/O

Generics Finally Added

e Templates done well (unlike C++)
- Type parameters to classes and methods.
- Type-checked at compile time.
- Allows clearer code and earlier detection of errors.
- Biggest impact on Collection classes.
e Limitations
- Virtual machine has not changed.
- Translated into old code with casts
- Casts and instanceof don't work correctly

- Can’t construct arrays involving variable type.



Constrained Genericity Constrained Genericity

e Introduced by Cardelli & Wegner 1985
* Quickly added to Eiffel

e Recall the way we constrained type params in Clu:

* Need to constrain type parameters sorted_bag = cluster [t : type] is create,

insert,

class List<T extends GraphicObject> {
private T head;

where t has
1t, equal : proctype (t,t) returns (bool);

head.show()

e How can we model this in Java §?
head.move(dx,dy) ... J 5

}
e Guarantees presence of methods from
GraphicObject in objects of type T.

Constraining Genericity F-Bounded Quantification

e Mitchell et 2/ introduced F-bounded

interface Comparable { .
quantification

boolean equal(Comparable other);
boolean lessThan(Comparable other); interface Comparable<T> {

}

boolean equal(T other);
class BST<T extends Comparable> { ... } boolean lessThan(T other);

}

class OrderedRecord implements Comparable {

. // inst vble declarations class BST<T extends Comparable<T>> { ... }
boolean lessThan(Comparable other) {
?2?2? class OrderedRecord
} implements Comparable<OrderedRecord> {

} boolean lessThan(OrderedRecord other) {
if (eee)en.
}




F-Bounded Problems!

e Seems to solve the problem, but sometimes too
complex to write easily.

public class ComparableAssoc

<Key extends Comparable<Key>, Value>

implements Comparable<ComparableAssoc<Key,Value>> {

e Not preserved by subclasses.
- Suppose C extends Comparable<C> and D extends C

- Then D extends Comparable<C> but not Comparable<D>

* See Bruce, “Some Challenging Typing Issues in Object-
Oriented Languages” on my web pages under recent

papers.



