
Lecture 21: Java & Eiffel
CSC 131

Kim Bruce

Java Design Goals

• Portability across platforms

• Reliability (code run on another computer)

• Safety (no viruses!)

• Dynamic Linking (change on the fly)

• Multithreaded execution (not ad hoc, part of language)

• Simplicity and Familiarity (C syntax, alas!)

• Efficiency (least important)

Portability

• Compiled to Java Byte code (JVML) and then run

 outer:
 for (int i = 2; i < 1000; i++) {
 for (int j = 2; j < i; j++) {
 if (i % j == 0)
 continue outer;
 }
 System.out.println (i);
 }

⇒

 0: iconst_2
 1: istore_1
 2: iload_1
 3: sipush 1000
 6: if_icmpge 44
 9: iconst_2
 10: istore_2
 11: iload_2
 12: iload_1
 13: if_icmpge 31
 16: iload_1
 17: iload_2
 18: irem

JVML
19: ifne 25
 22: goto 38
 25: iinc 2, 1
 28: goto 11
 31: getstatic #84; ...
 34: iload_1
 35: invokevirtual #85; ...
 38: iinc 1, 1
 41: goto 2
 44: return

Java
• Original implementations slow
- Compiled to JVML and then interpreted

- Now JIT

- Garbage collection

• Safety - 3 levels:
- Strongly typed

- JVML bytecode also checked before execution

- Run-time checks for array bounds, etc.

• Other safety features:
- No pointer arithmetic, unchecked type casts, etc.

- Super constructor called at beginning of constructor

Exceptions & Subtyping

• All non-Runtime exceptions must be caught or
declared in “throws” clauses
- void method readFiles() throws IOException {...}

• Suppose m throws NewException.

• What are restrictions on throwing exceptions
if m overridden in subclass? Masquerade!

Simplify from C++
• Purely OO language (except for primitives)

• All objects accessed through pointers
- reference semantics

• No multiple inheritance -- trade for interfaces

• No operator overloading

• No manual memory management

• No automatic or unchecked conversions

Interfaces

• Originally introduced to replace multiple
inheritance

interface Comparable {

 boolean equal(Object other);
 boolean lessThan(Object other);

 }

Interfaces

• Allows pure use of subtype polymorphism w/
out confusing with implementation reuse.

• public sort(Comparable[] elts) {...}

• Slower access to methods as method order in
vtable not guaranteed

Encapsulation
• Classes & interfaces can belong to packages:

package MyPackage;

public class C ...

• If no explicit package then in “default” package

• public, protected, private, “package” visibility

• Class-based privacy (not object-based):
- If method has parameter of same type then get access

to privates of parameter

Problems w/Packages
• Generally tied to directory structure.

• Anyone can add to package and get privileged
access

• All classes/interfaces w/out named package in
default package (so all have access to each
other!)

• No explicit interface for package

• Abstraction barriers not possible for interfaces.
Discourages use of interfaces for classes.

Abstraction barriers not monotonic
package A;
public class Fst {
 void m(int k){System.out.println("Fst m: "+k);}
 public void n(){System.out.print("Fst n: "); m(3);}
}

package B;
import A.*;
public class Snd extends Fst{
 public void m(int k){System.out.println("Snd m: "+k);}
 public void p(){System.out.print("Snd p: "); m(5);}
}

package A;
import B.*;
public class Third extends Snd{
 public void m(int k){System.out.println("Third m: "+k);}
}

Abstraction barriers not monotonic
import A.*;
import B.*;
public class Fourth{
 public static void main(String[] args){

! Fst fst = new Fst();
! fst.n();

! ! !
! Snd snd = new Snd();
! snd.n();
! snd.m(5);

! ! !
! Third third = new Third();
! third.n();
! third.m(7);
! third.p();

 }
}

Fst n: Fst m: 3

Fst n: Fst m: 3 // ????
Snd m: 5

Fst n: Third m: 3
Third m: 7
Snd p: Third m: 5

The method Snd.m(int) does not override the inherited method #om
Fst since it is private to a different package

Goals of Java 5
• Ease of Development
- Increased Expressiveness
- Increased Safety

• Scalability and Performance

• Monitoring and Manageability

• Desktop client

• Minimize Incompatibility
- No changes to virtual machine
- Only one new keyword (enum)

Java 5

• Generics
• Enhanced for loop (w/iterators)
• Auto-boxing and unboxing of primitive types
• Type-safe enumerated types
• Static Import
• Simpler I/O

Generics Finally Added
• Templates done well (unlike C++)
- Type parameters to classes and methods.
- Type-checked at compile time.
- Allows clearer code and earlier detection of errors.
- Biggest impact on Collection classes.

• Limitations

-Virtual machine has not changed.
-Translated into old code with casts
-Casts and instanceof don't work correctly
-Can’t construct arrays involving variable type.

Constrained Genericity
• Introduced by Cardelli & Wegner 1985

• Quickly added to Eiffel

• Need to constrain type parameters

• Guarantees presence of methods from
GraphicObject in objects of type T.

class List<T extends GraphicObject> {
 private T head;
 ...
 ... head.show() ...
 ... head.move(dx,dy) ...
}

Constrained Genericity

• Recall the way we constrained type params in Clu:

sorted_bag = cluster [t : type] is create,
insert, ...

 where t has
 lt, equal : proctype (t,t) returns (bool);

• How can we model this in Java 5?

Constraining Genericity

interface Comparable {

 boolean equal(Comparable other);
 boolean lessThan(Comparable other);

 }

 class BST<T extends Comparable> { ... }

class OrderedRecord implements Comparable {
 ... // inst vble declarations

boolean lessThan(Comparable other) {
 ???
}

 }

F-Bounded Quantification
• Mitchell et al introduced F-bounded

quantification
interface Comparable<T> {

 boolean equal(T other);
 boolean lessThan(T other);

 }

 class BST<T extends Comparable<T>> { ... }

class OrderedRecord
 implements Comparable<OrderedRecord> {

boolean lessThan(OrderedRecord other) {
 if (...)...
}

 }

F-Bounded Problems!
• Seems to solve the problem, but sometimes too

complex to write easily.
public class ComparableAssoc

 <Key extends Comparable<Key>, Value>
 implements Comparable<ComparableAssoc<Key,Value>> {

• Not preserved by subclasses.

- Suppose C extends Comparable<C> and D extends C

- Then D extends Comparable<C> but not Comparable<D>

• See Bruce, “Some Challenging Typing Issues in Object-
Oriented Languages” on my web pages under recent
papers.

