
Lecture 2: Compilers,
Theory, & PL’s

CSC 131
Fall, 2012

Kim Bruce

TA Hours

• Pomona:
- Richard: Wednesday 8 to 10 p.m in main lab

• HMC Hot Air balloon lab: Beckman B 105:
- Bridgette: Wednesday 8-10 p.m.

- Jake: Thursday 8:30 - 10:30 p.m.

First Homework
Due Thursday! Finish Grace

Sample Programs

• ComplexNumbers

Avoid Hoare’s
“Billion Dollar Mistake”

• No built-in null

• Accessing uninitialized variable is error

• Replace null by:
• sentinel objects, or
• error actions

6

Sentinel Objects

A real object, tailored for the situation, e.g.:

def emptyList = object {
 method asString {"<emptyList>"}
 method do(action) {}
 method map(function) {self}
 method size {0}
}

name for object
being definedlist

Sentinel Objects
Simplifies code, eliminates testing for null

class aList.cons(value, tailList) {
 method asString {"({head}:{tail})"}
 method head {value}
 method tail {tailList}
 method do(action) {
 action.apply(head)
 tail.do(action)
 }
 method map(function) {
 aList.cons(function.apply(head),
 tail.map(function))
 }
 method size {1 + tail.size}
}

boolean
expression, evaluated

once
no conditional code

Error Actions

• Grace encourages the use of blocks to
specify error actions or default values:

var x := table.at(key)ifAbsent{
	 	 	 	 	 	 return unknown(key)
 }

9

Grace Details

- No parens needed w/parameterless methods

- No parens if parameter bounded by “” or {}

- Must insert parens for most precedence

- Use blocks for code evaluated variable number of
times

- import “file” as libname
• provides usage of libname as an object w/all defs from library.

• See mgcollections use

Other Features ...

• Pattern matching (like Haskell/ML)

• Dialects for easy customization

Theory Matters!

Theory, Dynamic Execution,
& Static Checking

• Program, when started w/ input can:
- Terminate normally.

- Terminate w/ error message

- Run forever

• Effect of program:
- partial function f: string → string ∪ {error}

- Ex: g(x) = if odd(x) then 1 else g(x-1) + g(x-2)

Computable Functions

• f is computable iff exists program computing it.

• Church-Turing thesis:
 Computability independent of particular
 formal model
- Church-Kleene used lambda calculus

- Turing used Turing machines

- Godel-Kleene used partial recursive functions

- ...

Halting Problem

• Is there is a program that will determine for any
other program whether or not it will halt?

• More precisely:

- Is there a program that when provided with another
program and its input, will determine correctly 100% of
the time whether or not the given program will halt on
its input? (In particular, this program always halts
telling me yes or no.)

Halting Problem

• Proved undecidable -- i.e., no algo to solve it.

• Other undecidable problems:
- Will program eventually divide by 0?

- Will program eventually dereference a null pointer?

- Will program touch a particular piece of memory?

- Will program ever print out 0?

Totally Ridiculous!

• Could we have a language in which all
programs halt, and yet get all "total"
computable functions?

• Yes -- take only total functions from favorite
language -- make those only legal programs.

• Def: Say a language is good iff there is a
program (e.g., parser or type-checker) that
effectively determines for each candidate
program whether or not it is legal.

Abandon All Hope

• Theorem: Let L be a “good” language in
which all programs halt for all input. Then
there is an effectively computable total
function that is not expressible in the language.

• No hope of finding a language with a type-
checker which identifies all and only total
effectively computable programs.

Virtual Machines

Abstraction
• Dijkstra: Originally we were obligated to write

programs so that a computer could execute
them. Now we write the programs and the
computer has the obligation to understand and
execute them.

• Progress in PL design marked by increasing
support for abstraction.

• What are data types and how to construct new?

• What are ops and how do we construct new?

Creating an Illusion

Virtual Machine
Program Results

Data

Pure Translators

Assembler
Assembly
language

Machine
 Language

Assembler

Compiler
Source

 language
Object

 Language

Compiler

Preprocessor
Extended
 language

Pure
 Language

Preprocessor

Execution w/Compiler

Source
Computer

Compiler

Object
Computer

Source
code
Data Results

Virtual Machine

object
code

Interpreter

Computer

InterpreterSource
code

Data Results

Virtual Machine

Virtual Machine of Language

• Virtual machine defined by language

• Machine language is set of instructions
supported by language

• Layers of VM’s
- bare Intel Chip ⇒ Mac OS ⇒ Java ⇒ Application

• Describe language by VM it defines

VM of Language

• Problems:
- Different implementors may have different

conceptions of virtual machine

- Different computers may provide different facilities
and operations

- Implementors may make different choices as to how
to simulate elements of virtual computer

• May lead to different semantics, even on same
computer.

VM Problems

• How ensure different implementations give
same semantics?

• Sometimes VM’s are explicit
- Pascal P-code & P-machine

- Modula-2 M-code

- Java VM & JVML

More Detail: Interpreters

• Simulate virtual machine:
REPEAT

 Get next statement

 Determine action(s) to be executed

 Call routine to perform action

UNTIL done

More Detail: Compiler

• Translate from one VM to another
- Translate all units of program into object code

- Link into single relocatable machine code

- Load into memory

- Begin execution

Compiler vs Interpreter

Compiler Interpreter

Only translate each statement once Translate only if executed.

Speed of execution
Error messages tied to source.
More supportive environment.

No longer as true

Only object code in memory when
executing. May take more space

because of expansion

Must have interpreter in memory
while executing (though source may

be more compact)

Lack of Purity

• Rarely pure compiler or interpreter
- Typically compile source into form easier to interpret.

- Ex. Remove white space & comments, build symbol
table, or parse each line and store in more compact
form (e.g. tree)

• Java originally hybrid
- Compile into JVML and then interpreted

- Now compile to JVML & use just-in-time compiler
on JVML

Compiler Structure

• Analysis:
- Break into lexical items, build parse tree, annotate

parse tree (e.g. via type checking)

• Synthesis:
- generate simple intermediate code, optimization
(look at instructions in context), code generation,
linking and loading.

Symbol Table

• Symbol table:
- Contains all id names,

- kind of id (vble, array name, proc name, formal
parameter),

- type of value,

- where visible, etc.

Analysis

Source
Program

Lexical
Analysis

Symbol Table
Other Tables

Lexical
Items

Syntax
Analysis

Parse
Tree

Semantic
Analysis

Annotated
Parse Tree

Synthesis

Symbol Table
Other Tables

Inter.
Code

Optimiz-
ation

Optimized
Intermed.

Code
Code

Generation
Object
Code

Inter. Code
Generation

Annotated
Parse Tree

Portable Compilers

• Separate front and back-ends that share same
intermediate code (GNU compilers)
- Write single front end for each language

- Write single back end for each operating system -
architecture combination.

- Mix and match to build complete compilers

• JVM starting to play that role too

Formal Syntax

Formal Syntax

• Syntax:
- Readable, writable, easy to translate, unambiguous, ...

• Formal Grammars:
- Backus & Naur, Chomsky

- First used in ALGOL 60 Report - formal description

- Generative description of language.

• Language is set of strings. (E.g. all legal C++
programs)

Example
<exp> ⇒ <term> | <exp> <addop> <term>

<term> ⇒ <factor> | <term> <multop> <factor>

<factor> ⇒ <id> | <literal> | (<exp>)

<id> ⇒ a | b | c | d

<literal> ⇒ <digit> | <digit> <literal>

<digit> ⇒ 0 | 1 | 2 | ... | 9

<addop> ⇒ + | - | or

<multop> ⇒ * | / | div | mod | and

Extended BNF

• Extended BNF handy:
- item enclosed in square brackets is optional

• <conditional> ⇒ if <expression> then <statement>
 [else <statement>]

- item enclosed in curly brackets means zero or more
occurrences
• <literal> ⇒ <digit> { <digit> }

Syntax Diagrams

• Syntax diagrams - alternative to BNF.
- Syntax diagrams are never directly recursive, use

"loops" instead.

Ambiguity
<statement> ⇒ <unconditional> | <conditional>

 <unconditional> ⇒ <assignment> | <for loop> |
 "{" { <statement> } "}"

 <conditional> ⇒ if (<expression>) <statement> |
 if (<expression>) <statement>
 else <statement>

• How do you parse:

 if (exp1)
 if (exp2)
 stat1;
 else
 stat2;

Resolving Ambiguity

• Pascal, C, C++, and Java rule:
- else attached to nearest then.

- to get other form, use { ... }

• Modula-2 and Algol 68
- No “{“, only “}” (except write as “end”)

• Not a problem in LISP/Racket/ML/Haskell
conditional expressions

• Ambiguity in general is undecidable

Chomsky Hierarchy

• Chomsky developed mathematical theory of
programming languages:
- type 0: recursively enumerable

- type 1: context-sensitive

- type 2: context-free

- type 3: regular

• BNF = context-free, recognized by pda

Beyond Context-Free

• Not all aspects of PL’s are context-free
- Declare before use, goto target exist

• Formal description of syntax allows:
- programmer to generate syntactically correct

programs

- parser to recognize syntactically correct programs

• Parser-generators: LEX, YACC, ANTLR, etc.
- formal spec of syntax allows automatic creation of

recognizers

Specifying Semantics:
Lambda Calculus

Defining Functions

• In math and LISP:
- f(n) = n * n

- (define (f n) (* n n))

- (define f (lambda (n) (* n n)))

• In lambda calculus
- λn. n * n

- ((λn. n * n) 12) ⇒ 144

Pure Lambda Calculus

• Terms of pure lambda calculus
- M ::= v | (M M) | λv. M

- Impure versions add constants, but not necessary!

- Turing-complete

• Left associative: M N P = (M N) P.

• Computation based on substituting actual
parameter for formal parameters

Free Variables

• Substitution easy to mess up!

• Def: If M is a term, then FV(M), the collection
of free variables of M, is defined as follows:
- FV(x) = { x }

- FV(M N) = FV(M) ∪ FV(N)

- FV(λv. M) = FV(M) - {v}

