
Lecture 7: Haskell
CSCI 131
Fall, 2011

Kim Bruce

1

Homework 1 Comments
• Present explanations for answers.
- Convince us you know why answer is correct

• Include name in all files.

• Give complete answers (which language?)

• Turn in a single (zipped if necessary) file.

• For unused features, libraries don’t count.
- looking for features you avoid for some reason

- e.g., wildcard types, exceptions, inner classes, ...

2

Lists

• Lists
- [2,3,4,9,12]: [Integer]

- [] -- empty list

- Must be homogenous

- Functions: length, ++, :, map, rev
• also head, tail, but norma!y don’t use!

3

Polymorphic Types

• [1,2,3]:: [Integer]

• [“abc”, “def”]:: [[Char]], ...

• []:: [a]
• map:: (a → b) → ([a] → [b])

• Use :t exp to get type of exp

4

Pattern Matching

• Decompose lists:
- [1,2,3] = 1:(2:(3:[]))

• Define functions by cases using pattern
matching:

prod [] = 1
prod (fst:rest) = fst * (prod rest)

5

Pattern Matching

• Desugared through case expressions:
- head' :: [a] -> a

head' [] = error "No head for empty lists!"
head' (x:_) = x

• equivalent to
- head' xs = case xs of

 [] -> error "No head for empty lists!"
 (x:_) -> x

6

Type constructors

• Tuples
- (17,”abc”, True) : (Integer , [Char] , Bool)

- fst, snd defined only on pairs

• Records exist as well

7

More Pattern Matching

• (x,y) = (5 `div` 2, 5 `mod` 2)

• hd:tl = [1,2,3]

• hd:_ = [4,5,6]
- “_” is wildcard.

8

Static Typing

• Strongly typed via type inference
- head:: [a] → a

 tail:: [a] → [a]

- last [x] = x
last (hd:tail) = last tail

• System deduces most general type, [a] -> a
- Look at algorithm later

9

Static Scoping

• What is the answer?
- let x = 3
- let g y = x + y
- g 2
- let x = 6
- g 2

• What is the answer in original LISP?
- (define x 3)
- (define (g y) (+ x y))
- (g 2)
- (define x 6)
- (g 2)

10

Local Declarations
roots (a,b,c) =

 let -- indenting is significant
 disc = sqrt(b*b-4.0*a*c)

 in

 ((-b + disc)/(2.0*a),(-b - disc)/(2.0*a))

*Main> roots(1,5,6)

(-2.0,-3.0)

or

roots' (a,b,c) = ((-b + disc)/(2.0*a),
 (-b - disc)/(2.0*a))

 where disc = sqrt(b*b-4.0*a*c)

11

Anonymous functions

• dble x = x + x

• abbreviates

• dble = \x -> x + x

12

Type Classes
• Specify an interface:
- class Eq a where

 (==) :: a -> a -> Bool -- specify ops
 (/=) :: a -> a -> Bool
 x == y = not (x /= y) -- optional implementations
 x /= y = not (x == y)

- data TrafficLight = Red | Yellow | Green
instance Eq TrafficLight where
 Red == Red = True
 Green == Green = True
 Yellow == Yellow = True
 _ == _ = False

13

Common Type Classes

• Eq, Ord, Enum, Bounded, Show, Read

• data defs pick up default if add to class:
- data ... deriving (Show, Eq)

• Can redefine:
- instance Show TrafficLight where

 show Red = "Red light"
 show Yellow = "Yellow light"
 show Green = "Green light"

14

More Type Classes

• class (Eq a) => Num a where ...
- instance of Num a must be Eq a

• :info TypeClass
- gives interface and instances in scope

15

