Lecture 7: Haskell

CSCI 131
Fall, 2011
Kim Bruce

Lists

- Lists
-
- [] -- empty list
- Must be homogenous
- Functions: length, ++, :, map, rev
- also head, tail, but normally don't use!

Pattern Matching

- Decompose lists:
- $[\mathrm{r}, 2,3]=\mathrm{I}:(2:(3:[]))$
- Define functions by cases using pattern matching:
prod [] = 1
prod (fst:rest) = fst * (prod rest)

Homework I Comments

- Present explanations for answers.
- Convince us you know why answer is correct
- Include name in all files.
- Give complete answers (which language?)
- Turn in a single (zipped if necessary) file.
- For unused features, libraries don't count.
- looking for features you avoid for some reason
- e.g., wildcard types, exceptions, inner classes, ...

Polymorphic Types

- $[\mathrm{r}, 2,3]:$: [Integer]
- ["abc", "def"]:: [[Char]], ...
- []:: [a]
- map:: $(\mathrm{a} \rightarrow \mathrm{b}) \rightarrow([\mathrm{a}] \rightarrow[\mathrm{b}])$
- Use :t exp to get type of exp

Pattern Matching

- Desugared through case expressions:
- head' :: [a] -> a
head' [] = error "No head for empty lists!" head' ($\mathrm{x}: \perp$) $=\mathrm{x}$
- equivalent to
- head' xs = case xs of
[] -> error "No head for empty lists!" (x:_) -> x

Type constructors

- Tuples
- (17, "abc", True) : (Integer, [Char] , Bool)
- fst, snd defined only on pairs
- Records exist as well

Static Typing

- Strongly typed via type inference
- head:: $[\mathrm{a}] \rightarrow \mathrm{a}$
tail:: $[\mathrm{a}] \rightarrow[\mathrm{a}]$
- last $[\mathrm{x}]=\mathrm{x}$
last (hd:tail) = last tail
- System deduces most general type, [a] -> a
- Look at algorithm later

Local Declarations

roots $(a, b, c)=$
let -- indenting is significant
disc $=\operatorname{sqrt}(b * b-4.0 * a * c)$
in

$$
((-b+\operatorname{disc}) /(2.0 * a),(-b-\operatorname{disc}) /(2.0 * a))
$$

```
*Main> roots(1,5,6)
(-2.0, -3.0)
or
roots' \((a, b, c)=((-b+\operatorname{disc}) /(2.0 * a)\),
                                    (-b - disc)/(2.0*a))
    where disc \(=\operatorname{sqrt}(\mathrm{b} * \mathrm{~b}-4.0 * \mathrm{a}\) * c\()\)
```


More Pattern Matching

- $(\mathrm{x}, \mathrm{y})=\left(5\right.$ `div` 2,5 `mod $\left.{ }^{2}\right)$
- hd:tl = [1,2,3]
- hd:- = $[4,5,6]$
- "_" is wildcard.

Static Scoping

- What is the answer?
- let $\mathrm{x}=3$
- let g
y
$=$
$\mathrm{x}+\mathrm{y}$
- g 2
- let $x=6$
-What is the answer in original LISP?
- (define x 3)
- (define (g y) (+ x y))
- (g2)
- (define x 6)
- (g 2)

Anonymous functions

- dble $\mathrm{x}=\mathrm{x}+\mathrm{x}$
- abbreviates
- $\mathrm{dble}=\mid \mathrm{x}->\mathrm{x}+\mathrm{x}$

Type Classes

- Specify an interface:
- class Eq a where
(=) :: a ->a $->$ Bool -- specify ops
(/=):: a $->$ a $->$ Bool
$\mathrm{x}=\mathrm{y}=\mathrm{not}(\mathrm{x} /=\mathrm{y}) \quad--$ optional implementations
$x /=y=\operatorname{not}(x=-y)$
- data TrafficLight $=$ Red \mid Yellow \mid Green
instance Eq TrafficLight where
Red $==$ Red $=$ True
Green == Green = True
Yellow == Yellow = True _ == _ = False

Common Type Classes

- Eq, Ord, Enum, Bounded, Show, Read
- data defs pick up default if add to class:
- data ... deriving (Show, Eq)
- Can redefine:
- instance Show TrafficLight where
show Red = "Red light"
show Yellow = "Yellow light"
show Green = "Green light"

More Type Classes

- class (Eq a) $\Rightarrow>$ Num a where...
- instance of Num a must be Eq a
- :info TypeClass
- gives interface and instances in scope

