
Lecture 3: LISP & Scheme,
Compilers & Interpreters

CSC 131
Fall, 2008

Kim Bruce

TA Hours

• Pomona CS lab: Sam, Th 8 to 10 p.m.

• HMC Beckman B 105 (Hot Air balloon lab):
- Alejandro, W 8 to 10 p.m.

- Marquis, Th 9 to 11 p.m

Defining functions

• (lambda (x) (* x x)) anonymous function

• (define z 22) naming exp

• (define square (lambda (x) (* x x))) or

• (define (square x) (* x x))

Recursive Functions

• (define (append l1 l2)
 (if (null? l1)
 l2
 (cons (car l1) (append (cdr l1) l2)))
)

• (append ‘(1 2 3) ‘(4 5 6))

More functions
• Predefined list functions:
- (map f ‘(a b c d)) ! ((f a) (f b) (f c) (f d))

- (member 1 ‘(3 2 1 0)) ! (1 0)

• Local variables:
- (define (roots a b c)
$ (let ((disc (- (* b b) (* 4 a c))))
$ (if (>= disc 0) (list (/ (+ (- 0 b) (sqrt disc)) (* 2 a))
$ $ (/ (- (- 0 b) (sqrt disc)) (* 2 a)))
 $ ‘(0 0)
)
 $)
)

Dynamically Typed

• Types associated w/ values instead of variables.

• Values have tag w/type

• (* a b) -- actual operation depends on whether
both ints, both doubles, or one something else

• Requires run-time check for type safety

Evaluation

• Very successful in AI & elsewhere

• Good for experimental programming

• Blur boundaries between data and program

• Simple abstract machine:
- Atoms and cons cells -- simple representation

- expression, continuation, association list
(environment), and heap.

Virtual Machines

Abstraction
• Dijkstra: Originally we were obligated to write

programs so that a computer could execute
them. Now we write the programs and the
computer has the obligation to understand and
execute them.

• Progress in PL design marked by increasing
support for abstraction.

• What are data types and how to construct new?

• What are ops and how do we construct new?

Creating an Illusion

Virtual
Machine

Program Results
Data

Pure Translators

Assembler
Assembly
language

Machine
 Language

Assembler

Compiler
Source

 language
Object

 Language

Compiler

Preprocessor
Extended
 language

Pure
 Language

Preprocessor

Execution w/Compiler

Source
Computer

Compiler

Object
Computer

Source
code
Data Results

Virtual Machine

object
code

Interpreter

Computer

InterpreterSource
code

Data Results

Virtual Machine

Virtual Machine of Language

• Virtual machine defined by language

• Machine language is set of instructions
supported by language

• Layers of VM’s
- bare Intel Chip ! Mac OS ! Java ! Application

• Describe language by VM it defines

VM of Language

• Problems:
- Different implementors may have different

conceptions of virtual machine

- Different computers may provide different facilities
and operations

- Implementors may make different choices as to how
to simulate elements of virtual computer

• May lead to different semantics, even on same
computer.

VM Problems

• How ensure different implementations give
same semantics?

• Sometimes VM’s are explicit
- Pascal P-code & P-machine

- Modula-2 M-code

- Java VM & JVML

More Detail: Interpreters

• Simulate virtual machine:
REPEAT

 Get next statement

 Determine action(s) to be executed

 Call routine to perform action

UNTIL done

More Detail: Compiler

• Translate from one VM to another
- Translate all units of program into object code

- Link into single relocatable machine code

- Load into memory

- Begin execution

Compiler vs Interpreter

Compiler Interpreter

Only translate each statement once Translate only if executed.

Speed of execution
Error messages tied to source.
More supportive environment.

No longer as true

Only object code in memory when
executing. May take more space

because of expansion

Must have interpreter in memory
while executing (though source may

be more compact)

Lack of Purity

• Rarely pure compiler or interpreter
- Typically compile source into form easier to interpret.

- Ex. Remove white space & comments, build symbol
table, or parse each line and store in more compact
form (e.g. tree)

• Java originally hybrid
- Compile into JVML and then interpreted

- Now use just-in-time compiler

Compiler Structure

• Analysis:
- Break into lexical items, build parse tree, annotate

parse tree e.g. via type checking)

• Synthesis:
- generate simple intermediate code, optimization
(look at instructions in context), code generation,
linking and loading.

