
Lecture 16: Parsing

CSCI 131
Fall, 2008

Kim Bruce

Rewrite Grammar
 <exp> ::= <term> <termTail> (1)

 <termTail> ::= <addop> <term> <termTail> (2)

 | ! (3)

 <term> ::= <factor> <factorTail> (4)

 <factorTail> ::= <mulop> <factor> <factorTail> (5)

 | ! (6)

 <factor> ::= (<exp>) (7)

 | NUM (8)

 | ID (9)

 <addop> ::= + | - (10)

 <mulop> ::= * | / (11)

No le! recursio"
How do we know which production to take?

FIRST
• Intuitio": b ! First!X" i# there is a derivation

 X "* b! for some !.

1. First!b" = $b% for b a terminal or the empty
string

2.If have X ::= !1 | !2 | ... | !n then
 First!X" = First!!1" # ... # First!!n"

3. For any right hand side u1u2...un

& First!u1" $ First!u1u2...un"

& if all of u1, u2..., ui&1 can derive the empty string then
also First!ui" $ First!u1u2...un"

& empty string is in First!u1u2...un" i# all of u1, u2..., un

can derive the empty string

Follow

• Intuition: A terminal b ! Follow!X" i# there is a
derivation S "* vXb! for some v and !.

1. If S is the start symbol then put EOF ! Follow!S"

2.For all rules of the form A ::= wXv,

a. Add all elements of First!v" to Follow!X"

b. If v can derive the empty string then add all elts of
Follow!A" to Follow!X"

• Follow!X" only used if can derive empty string
from X.

Follow for Arithmetic

 FOLLOW!<exp>" = $ EOF, " %

 FOLLOW!<termTail>" = FOLLOW!<exp>" = $ EOF, " %

 FOLLOW!<term>" = FIRST!<termTail>" #

 FOLLOW!<exp>" # FOLLOW!<termTail>"

 = $ +, &, EOF, " %

FOLLOW!<factorTail>" = $ +, &, EOF, " %

 FOLLOW#<factor>$ = % *, /, +, &, EOF '

 FOLLOW#<addop>$ = % #, NUM, ID ' Not needed!

 FOLLOW#<mulop>$ = % #, NUM, ID ' %

Predictive Parsing

• Want at most one production per entry.

& unambiguous choice of production

& may require rewriting of grammar!

• Rules:

& If A ::= "1 | ...| "n then for all i'(j,
 First!"i" % First!"j" = &.

& If X "* #, then First!X" % Follow!X" = &.

Build Table

• Create table to guide parsing.

& Rows are non&terminals, columns are terminals

& Put production X ::= w in entry !X,b" i#

• b ! First!w" or

• empty string is in First!w" and b ! Follow!X"

• Production in entry !X,b" i# applying production
can eventually lead to string starting with b.

First for Arithmetic

FIRST!<exp>" = $!, NUM, ID %

FIRST!<termTail>" = $ +, &, ! %

FIRST!<term>" = $!, NUM, ID %

FIRST!<factorTail>" = $ *, /, ! %

FIRST!<factor>" = $!, NUM, ID %

FIRST!<addop>" = $ +, & %

FIRST!<mulop>" = $ *, / %

Parse Table for Arithmetic
Non&

terminals ID NUM Addop Mulop # $ EOF

<exp>

<termTail>

<term>

<factTail>

<factor>

<addop>

<mulop>

1 1 1
2 3 3

4 4 4
6 5 6 6

9 8 7
10

11

See ML Recursive Descent Parser

Table&Driven Stack&based Parser
• http://en.wikipedia.org/wiki/LL_parser

• Start with S) on stack and input) to be
recognized.

• Use table to replace non&terminals on top of
stack.

• If terminal on top of stack matches next input
then erase both and proceed.

• Success if end up clearing stack and input

• Show with ID * !NUM + NUM"

Another alternative

• LR!1" parsers && bottom up, gives right&most
derivation.

• YACC is LR!1". ANTLR is LL!1".

• k in LL!k" and LR!k" indicates how many
letters of look ahead are necessary && e.g. length
of strings in columns of table.

• Compiler writers are happiest with k=1 to avoid
exponential blow&up of table. May have to
rewrite grammars.

