Lecture 26: Control Structures:
Iterators & Exceptions

CSC 131
Fall, 2006

Semantics of While

(b, ey 9) => (false, s) Notice similarity between.

(while b do C, ev; s) => &’ ﬂm}v e do G

(b, ev;) => (true, s) (C, ey, 8) =>s” i Iéthen begin
(while b do C, ev, s”) => s while E do C
(while b do C, ev; s) => s end

Natural Semantics of
Commands

(e, ev,8) => (v 8)

where ev(x) = loc
(x:= e, e, s) => s'[loc:=v}

(C1,ev,s)=>s (Cz,ev;s)=>s"

(Cr; C2, ev; 8) => 5"

(b, ev, s) => (true, s) (C1, ev;s) =>s”

(if b then Cr else Cz2, ev; s) => s”

Implementing Iterators

e Just another object w/state in o-o language
¢ What about procedural?
¢ How can we retain state?

e Specific kind of coroutine.

Iterators

e Abstract over control structures

for c : char in string_chars(s) do ...

- where

string_chars = iter (s : string) yields (char);
index: Int =15
limit : Int := string$size (s);
while index <= limit do
yield (string$fetch(s, index));
index := index + 1;
end;
end string_chars;

Handling Errors

e What happens when something goes wrong,
e.g., with read from file.

e In C returns error condition, which is generally

ignored.

¢ In more modern languages, throw exception,
which must be handled or crash.

Exceptions

¢ Designed to handle unexpected errors.

¢ Exception handlers based on dynamic calls, not
static scope.

¢ Allows program to recover from exceptional
conditions, esp. beyond programmers control

e Can be abused!

Exception Handling

o Ada:
- raise exception_name;
- handling:
begin
C
exception
when excp_namer => C’

when excp_name2 => C”
when others => C’

e Java, C++ similar w/ “throw” & “try-catch”

Example Exceptions

¢ Arithmetic, array bounds, or I/O faults,
e Failure of preconditions
¢ Unpredictable conditions

e Tracing program flow in debugger

After Handling ...

¢ (Ada/Java): Return from block

e PL/I: Resumption model: re-execute failed
statement.

¢ Eiffel: Reexecute block where failure occurred

¢ ML & Java — exceptions can take parameters

Handling Exceptions

* When throw exception -- where look for
handler?

- Same unit? (Ada/C++/Java)
- Calling unit? (Clu)

- If not find, continue up call chain

ML example

datatype 'a stack = EmptyStack |

Push of 'a * ('a stack);
exception empty;

fun pop EmptyStack = raise empty
pop(Push(n,rest)) = rest;

fun top EmptyStack = raise empty
top (Push(n,rest)) = n;

fun IsEmpty EmptyStack = true
IsEmpty (Push(n,rest)) = false;

ML Match Parens Example

exception nomatch;

fun buildstack nil initstack = initstack

| buildstack ("("::rest) initstack =

buildstack rest (Push("(",initstack))
| buildstack (")"::rest) (Push("(",bottom)) = bottom
| buildstack (")"::rest) initstack = raise nomatch

buildstack (fst::rest) initstack =
buildstack rest initstack;

fun balanced string =
(buildstack (explode string) = EmptyStack)
handle nomatch => false;

Questionable use of exceptions

Exceptions in Java

® Objects from subclass of Exception class
try {
} cé{:(‘:h (ExcType ex) {
} catch (Exc'Type ex) {...} ...
¢ If not caught, must declare. E.g.

public E pop() throws EmptyStackException {
. throw new EmptyStackException(); ...

}

Exceptions in SML

Can carry parameters
exception error of String;

General form:
<exp> handle <patl> => <expl>
| <pat2> => <exp2>

| <patn> => <expn>

If Exception Not Handled

¢ Pop off activation records while searching for

handler.

e What if allocated memory in unit being
popped?

¢ OK if garbage collection, but ...

¢ Closing files also problems

RuntimeException

¢ Exceptions from subclasses need not be
declared in method headers

e Ex.:

- NullPointerException,
ArrayIndexOutOfBoundsException,
Illegal ArgumentException,
NumberFormatException, and ArithmeticException

¢ Unfortunately, also includes
EmptyStackException

Java try-catch-finally

try {

} c;‘;c.:h (ExcType ex) {
} catch (Exc'Type ex) {
A

} finally {... }

Continuations

¢ Rest of computation
¢ Explicitly represented in Scheme

e Have been important in compilers for

functional languages

¢ Other techniques have superseded lately, so will
skip.

Call-by-need

o If have to evaluate several times then
expensive.

o Cache answer once computed so can be
accessed by other occurrences.

Manipulating Evaluation

Order

e What if actual params are expensive to
evaluate, but aren’t always used?

¢ Can suspend evaluation of e by replacing it by

Delay(e) = fn 0 => e.
¢ Evaluate by Force(e) = €0

¢ Important to have as macros, not functions!

Summary of Statements

¢ Progression from goto to higher-level
abstractions:

- Expression = function
- Statement = procedure
- control structure = iterator

¢ Modern control: iterators, exceptions,
continuations, delay-force

Implementing Call-by-need

datatype “a delay = Ev of “a |
UnEval of unit -> “a;

fun ev(Ev(x)) = x
| ev(UnEval(f)) = £();

Delay(e) = ref(UnEval(fn () => e))
Force(e) = let
val v = ev(!d)
in

(d := Ev(V);V)
end;

