
Lecture 24:
More Storage Management

CSC 131
Fall, 2006

Dynamic Languages

• Dynamic types ## associate type descriptor w/
values of variables

• Dynamic scope ## no longer need static/access
link in activation record

look for closest activation record with vble

• Late binding costs ## more space, slower access

• Bene$ts # more %exibility

Pointers

• Flexibility, but major source of run#time errors.

• 'Pointers have been lumped with the goto
statement as a marvelous way to create
impossible to understand programs.(
 Kernighan & Ritchie

Problems with Pointers

• Dereferencing uninitialized or nil pointers

• Dangling pointers !recycle active memory"

E.g., C allows pointers into stack

Explicit deallocation of active memory in heap

• Garbage: Unreachable items may clog heap

• Holes in typing system may allow arbitrary ints
to be used as pointers.

Heap Management

• Stack doesn&t work in some circumstances

functions returning functions

dynamically allocated memory

• Heap allows dynamic allocation/deallocation of
memory.

Manually

Automatically

Managing the Heap

• Heap maintained as stack of blocks of memory

• Need strategy to handle requests and returns.

Best $t

First $t

• Fragmentation is serious problem when return

• Coalesce blocks on heap

• May need to compact memory occasionally

Automating Dispose

• Garbage collection !lazy"

• Reference counting !eager":

Keep track of number of references to block of
memory.

Return it when count is 0.

Disadvantages:

• space and time overhead of keeping count,

• circular structures.

Garbage Collection

• At a given point in execution of program P,
memory location m is garbage if no continued
execution of P from this point can access m.

• Automatic garbage collectors start with root
set and search out all memory locations
accessible from root set.

• Automatic garbage collectors necessarily
conservative.

Mark and Sweep Collector

• Mark 'alive(elements.

• Sweep through memory and reclaim garbage

• Problems:

Space for marks !and stack while marking"

Two sweeps through memory needed

• Used in Java 1.0, 1.1, but not later

Copying Collector

• Divide memory in half ## working vs. free

• When working exhausted

Copy live nodes from working to free

Swap halves

• Evaluation:

Only looks at live cells

Can be incremental

Needs twice as much space, but respects cache

Allocation very cheap!

Generational Collector

• Only try to collect recently allocated blocks

• Divide memory into two or more generations.

• Modern Java uses copying collector for
youngest and older uses mark#compact scheme

youngest gets lots of garbage quickly

mark#compact doesn&t move lots of older objects

