Lecture 20: Soundness & Completeness of Predicate Logic

CSCI 81 Spring, 2015

Kim Bruce

Soundness & Completeness

- Soundness Theorem.
 - If $\Gamma \vdash \psi$, then $\Gamma \vDash \psi$.
 - If Γ is satisfiable, then Γ is consistent.
- Completeness Theorem.
 - If $\Gamma \vDash \psi$, then $\Gamma \vdash \psi$.
 - If Γ is consistent, then Γ is satisfiable.
 - This is different meaning of complete from that of theory!

Useful Lemmas

- Lemma: For all terms t and u, models *M*, and lookup tables *l* such that *l* provides meanings for all free variables in t and u, then t[u/x]^{*m*}_{*l*} = t^{*m*}_{*l*} where *l*' = *l*[x→ u^{*m*}_{*l*}]
- Lemma: For all terms u, wffs φ, models *M*, and lookup tables *l* such that *l* provides meanings for all free variables in u and φ, then *M*.*l* ⊨ φ[u/x] iff *M*.*l'* ⊨ φ where *l'* = *l*[x→ u^{*M*}_{*l*}]

Soundness

- Suppose $\Gamma \vdash \psi$. Show for all \mathcal{M}, ℓ if $\mathcal{M}, \ell \models \Gamma$ then $\mathcal{M}, \ell \models \psi$.
- Proof (sketch!) by induction on length n of proof
 - n = 1, then step is premise -- easy.
 - Suppose true for proofs of length $k < n, \, prove \, for \, n$
 - Cases depending on rules -- skip prop. logic rules
 - =i, easy

Proof of Soundness

- e. Suppose t = u, φ[t/x] are earlier steps of proof. By induction, *M*.ℓ ⊨t = u, φ[t/x].
 - Thus $t_{\ell}^{\mathcal{M}} = u_{\ell}^{\mathcal{M}}$ and $\mathcal{M}, \ell' \models \phi$ for $\ell' = \ell$ except that $\ell'(x) = t_{\ell}^{\mathcal{M}}$.
 - By the lemma, $\mathcal{M}.\ell \vDash \varphi[t/x]$ iff $\mathcal{M}.\ell' \vDash \varphi$ by induction on size of φ
 - But since $t^{\mathcal{M}}_{\ell} = u^{\mathcal{M}}_{\ell}$ it follows that $\mathcal{M}_{\ell} \models \varphi[u/x]$
- ∀e, ∃i, easy

More Soundness Proof

- $\exists e, \forall i \text{ similar. Do } \exists e.$
 - Suppose have proof of χ using $\exists e$. Then $\Gamma \vdash \exists x \phi$ and $\Gamma \cup \{\phi(x_o)\} \vdash \chi$ where x_o is new. By induction, $\mathcal{M}.\ell \vDash \exists x \phi$
 - Thus there is d s.t. $\mathcal{M}, \ell' \models \phi$ for $\ell' = \ell$ except that $\ell'(x) = d$.
 - Now let $\ell'' = \ell$ except that $\ell''(x_0) = d$. Thus $\mathcal{M}, \ell'' \models \varphi(x_0)$
 - But $\mathcal{M}, \ell^{"} \models \Gamma \cup \{\phi(\mathbf{x}_{\circ})\} \& \Gamma \cup \{\phi(\mathbf{x}_{\circ})\} \vdash \chi \text{ in shorter proof.}$
 - By induction, $\mathcal{M}.\ell'' \vDash \chi$ and hence $\mathcal{M}.\ell \vDash \chi$ since χ not have x_o free.

Completeness

- Rather than proving if Γ ⊨ ψ, then Γ ⊢ ψ, instead prove if Γ' is consistent, then Γ' is satisfiable.
 - Spose Γ' is consistent implies Γ' is satisfiable.
 - If $\Gamma \vDash \psi$ then $\Gamma \cup \{\neg \psi\}$ is unsatisfiable.
 - Hence, by above, $\Gamma \cup \{\neg\psi\}$ is inconsistent
 - By $\neg i$ and $\neg \neg e$, $\Gamma \vdash \psi$

Completeness

- Show if Γ is consistent, then Γ is satisfiable.
- Proof sketch: Add an infinite number of constants to language and "Skolem functions" to provide witnesses for all existentials. Show that can define a model that satisfies everything in Γ .
- Originally proved by Kurt Gödel in 1929 Ph.D. dissertation. Nicer proof by Henkin in 1950 Ph.D. dissertation

Undecidability

- Validity hard! To show Γ ⊨ φ, must show all models of Γ also satisfy φ.
- Natural deduction gives semi-decidability by soundness and completeness.

Compactness

- Let Γ be a (possibly infinite) set of sentences of predicate logic. If all finite subsets of Γ are satisfiable, the Γ itself is satisfiable.
 - Proof: Suppose Γ not satisfiable. Therefore Γ not consistent. Write proof of ⊥.
 Formal proof uses only finite set Γ₀ ⊆ Γ.
 Therefore Γ₀ not consistent, and hence not satisfiable.
- Many important applications

Applications of compactness

• Theorem (Löwenheim-Skolem Theorem): Let ψ be a sentence of predicate logic such that for any natural number $n \ge I$ there is a model of ψ with at least n elements. Then ψ has a model with infinitely many elements.