Lecture 13: Parsing & Logic

CSCI 81 Spring, 2015

Kim Bruce

Arithmetic grammar

Look at parse tree & abstract syntax tree for 2 * 3 + 7

Recursive Descent Parser

```
Base recognizer (ignore building tree) on productions:
```

Problems

- How do we select which production to use when alternatives?
- Left-recursive never terminates

Rewrite Grammar

Rewrite Grammar

```
<exp> ::= <term> <termTail>
                                                      (1)
 <termTail> ::= <addop> <term> <termTail>
                                                      (2)
                                                     (3)
      <term> ::= <factor> <factorTail>
                                                      (4)
<factorTail> ::= <mulop> <factor> <factorTail>
                                                      (5)
                                                     (6)
    <factor> ::= ( <exp> )
                                                      (7)
                 NUM
                                                      (8)
                 ID
                                                      (9)
     <addop> ::= + | -
                                                     (10)
     <mulop> ::= * | /
                                                     (11)
                     No left recursion
         How do we know which production to take?
```

Predictive Parsing (LL(1))

 $Goal: a_{\scriptscriptstyle \rm I}a_{\scriptscriptstyle \rm 2}...a_n$

$$S \rightarrow \alpha$$
...
 $\rightarrow a_1 a_2 X \beta$

Want next terminal character derived to be a₃

 a_3 in First(γ)

Need to apply a production $X := \gamma$ where

- 1) γ can eventually derive a string starting with a_3 or
- 2) If X can derive the empty string, then see if β can derive a string starting with a_3 .

 a_3 in Follow(X)

Non- terminals	ID	NUM	Addop	Mulop	()	EOF
< <i>exp></i>	I	I			I		
<termtail></termtail>			2			3	3
<term></term>	4	4			4		
<facttail ></facttail 			6	5		6	6
<factor></factor>	9	8			7		
<addop></addop>			IO				
<mulop></mulop>				II			

Read off from table which production to apply! $Ex: Parse \ 2 * 3 + 7$

Logic(s)

Logic

- Context free language designed for expressing Boolean-valued statements
- Goal is to investigate when logic statements are
 - True in some or all models
 - Provable according to rules for proving
 - ... and to see if there is a connection between the two
- Start simple & work up in complexity.

Propositional Logic

- Definition of well-formed formulas of prop logic:
 - $S ::= P | (S \lor S) | (S \land S) | (\neg S) | (S \rightarrow S)$

Use "::=" in place of "→"

• P := p | q | r | ...

for productions to avoid confusion

- Often (informally) drop parentheses around terms
 - Precedence: \neg , \wedge , \vee , \rightarrow
 - ∧ and v are left associative; → is right associative.
- Sometimes add \top for true and \bot for false.

Semantics of Propositional Logic

- Meaning of formula depends on meaning of propositional letters.
 - Start with valuation fcn V: Prop Letters → {true,false}
 - Extend to V*: Prop Logic Formulas \rightarrow {true, false} by
 - $V^*(p) = V(p)$ if p is propositional letter
 - $V^*(\neg \varphi)$ = false iff $V^*(\varphi)$ = true
 - $V^*(\phi \vee \gamma)$ = true iff $V^*(\phi)$ = true or $V^*(\gamma)$ = true (or both)
 - $V^*(\phi \wedge \gamma)$ = true iff $V^*(\phi)$ = true and $V^*(\gamma)$ = true
 - $V^*(\phi \rightarrow \gamma)$ = false iff $V^*(\phi)$ = true and $V^*(\gamma)$ = false

Truth Tables

P	Q	$\neg P$	$P \wedge Q$	Pv Q	<i>P</i> →2
T	T	F	Т	Т	Т
T	F	F	F	Т	F
F	T	Т	F	Т	Т
F	F	Т	F	F	Т

Each row corresponds to different valuation

Categories of WFFs

- A formula ϕ is *valid*, or a *tautology*, if for all valuations V, we have $V^*(\phi) = \text{true}$.
- A formula ϕ is *satisfiable* if for some valuation V, we have V*(ϕ) = true.
- A formula ϕ is *falsifiable* if for some valuation V, we have V*(ϕ) = false.
- A formula ϕ is *unsatisfiable*, or a *contradiction*, if for all valuations V, we have $V^*(\phi)$ = false.

Semantic Entailment

- ϕ_{r} , ..., $\phi_{n} \models \psi$ iff for every valuation V s.t. $V^{*}(\phi_{r}) = ... = V^{*}(\phi_{n}) = true$, then $V^{*}(\psi) = true$
 - Example: $P \models Q \rightarrow P$
 - Read ϕ_i , ..., $\phi_n \models \psi$ as ϕ_i , ..., ϕ_n semantically entails ψ
- Hence, $\models \psi$ iff ψ is a tautology.
- Show: $\phi_1, ..., \phi_n, \phi \models \psi \text{ iff } \phi_1, ..., \phi_n \models \phi \rightarrow \psi$

Proof Rules

- Syntactically determined set of rules for inferring conclusion from hypotheses.
- Rules provide kind of meaning for connectives
 - Different texts use different rules -- all equivalent!
- $\phi_1, ..., \phi_n \vdash \psi$
- Constructing proof is creative
 - Not clear what rules to apply

Rules for A

$$\frac{\varphi \quad \psi}{\varphi \quad \wedge \psi} \wedge i$$

$$\frac{\phi \wedge \psi}{\phi} \wedge e_{r}$$

$$\frac{\phi \wedge \psi}{\psi} \wedge e_2$$

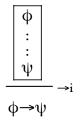
Rules for \neg , \rightarrow

$$\frac{\phi \quad \phi \rightarrow \psi}{} \rightarrow e$$

modus ponens

modus tolens
*derived rules

→ Introduction

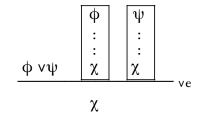


If from an assumption of ϕ , one can deduce ψ , then one can deduce $\phi \rightarrow \psi$ I.e., hypothesis of ϕ is discharged in proof.

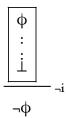
v Rules

$$\frac{\Phi}{\Phi \vee \psi}$$
 via

$$\frac{\psi}{\varphi \vee \psi} \vee i_2$$



Negation & ⊥-Rules



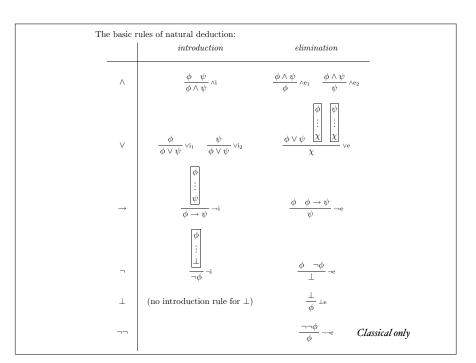
Proofs

- Ordered list of steps where each step justified as premise or by proof rule from earlier steps.
- Show $\vdash \neg(\varphi \land \neg \varphi)$

1. ф∧¬ф	assumption
2. ф	ı, ۸e
3. ¬ф	ı, ۸e
4. ⊥	2,3, ¬e
5. ¬(φ ∧ ¬φ)) ₁₋₄ , ¬i

Always indicate proof rule and steps used to get new wff Use boxes for subproofs to be discharged

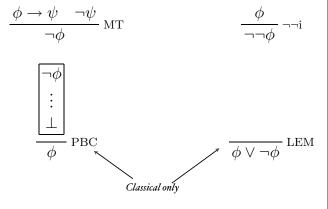
Distinction between hypothesis and assumption



Example Proofs

- Be careful with proof boxes:
 - Can't use internal steps when reasoning outside the box.
- Typically work backwards!
- Show
 - $\phi \lor \psi \vdash \psi \lor \phi$
 - $\vdash \varphi \rightarrow (\psi \rightarrow \varphi)$
 - $\phi \rightarrow (\psi \rightarrow \chi) \vdash \psi \rightarrow (\phi \rightarrow \chi)$

Some useful derived rules:



Troublesome Proof

- Are there two irrational numbers, *a* and *b*, such that *a*^{*b*} is rational?
 - Notice $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2^2} = 2$
 - Case 1: $\sqrt{2^{1/2}}$ is rational and take $a = b = \sqrt{2}$
 - Case 2: $\sqrt{2^{\sqrt{2}}}$ is irrational and take $a = \sqrt{2^{\sqrt{2}}}$, $b = \sqrt{2}$
- Constructivist rejects because can't tell which alternative is true.

Constructivist vs Classical Logics

- Constructivists don't believe in ¬¬e rule:
 - ¬¬ф ⊢ф
- Don't believe $\vdash \varphi \lor \neg \varphi$ except in special cases.
 - Don't accept proof by contradiction!
- Give constructive proof of $\phi \lor \psi \vdash \neg(\neg \phi \land \neg \psi)$