Lecture 13: Parsing & Logic

CSCI 81
Spring, 2015

Kim Bruce

Arithmetic grammar

<exp> = <exp> <addop> <term>
| <term>
<term> = <term> <mulop> <factor>
| <factor>
<factor> = ( <exp> )
| NUM
| ID
<addop> ::= + | -
<mulop> ::= * | /

Look at parse tree & abstract syntax tree for 2 *3 + 7

Recursive Descent Parser

Base recognizer (ignore building tree) on productions:
<exp> ::= <exp> <addop> <term>

addop (fst:rest) = if fst=='+’' or fst=='-‘ then rest
else error ...

exp input = let

inputAfterExp
inputAfterAddop = addOp inputAfterExp

rest = term inputAfterAddop
in
rest
or

exp input = term(addOp(exp input));

Problems

* How do we select which production to use
when alternatives?

e | eft-recursive - never terminates




Rewrite Grammar

<exp> ::= <term> {<addop> <term>}*
<term> ::= <factor> {<mulop> <factor>}*
<factor> ::= ( <exp> ) | NUM | ID
<addop> ::= + | -
<mulop> ::= * | /

Rewrite Grammar

<exp> ::
<termTail> ::

<term> ::
<factorTail> ::

<factor> ::

<addop> ::
<mulop> ::

How do we know which production to take?

<term> <termTail>

<addop> <term> <termTail>
3

<factor> <factorTail>

3
( <exp> )
NUM
ID
+ | -
* | /
No left recursion

<mulop> <factor> <factorTail>

(
(

(1)
(2)
(3)
(4)
(3)
(6)
(7)
(8)
(9)
10)
11)

Predictive Parsing (LL(1))

Goal: a;a,...a,
S—=a

— a,2,Xf}

Want next terminal character derived to be a,
a; in First(y)
Need to apply a production X ::= y where
1) Y can eventually derive a string starting with a; or
2) If X can derive the empty string, then see
if B can derive a string starting with a;.

a; in Follow(X)

wor | ID | NUM | Addop | Mulop| (| ) | EOF
<exp> I I I

<termTlail> 2 3 3
<term> 4 4 4

g%fhﬂ 6 5 6 6
<factor> 9 8 7

<addop> 10

<mulop> 11

Read off from table which production to apply!

Ex: Parse2*3+7




Logic

* Context free language designed for expressing
Boolean-valued statements

lL.o gic (S) * Goal is to investigate when logic statements are
* True in some or all models
e Provable according to rules for proving

e ... and to see if there is a connection between the two

e Start simple & work up in complexity:.

Semantics of Propositional

Propositional Logic :
Logic
e Definition of well-formed formulas of prop logic: * Meaning of formula depends on meaning of

propositional letters.
e S:=PI (v IESAD IS (S—S) Use “:="in place of “—”

for productions to avoid e Start with valuation fcn V: Prop Letters — {true,false}

e Pu=plqlrl. confusion

¢ Extend to V*: Prop Logic Formulas — {true,false} by

e Often (informally) drop parentheses around terms « V)= V() if p s propositionl letter

e Precedence: -, A, v, — o V*=() = false iff V¥(¢) = true

.. . . . . * = i * = *(ny) =
A and v are left associative; — is right associative. * VHpvy) = true iff V¥G) = true or V¥y) = erue (or both)

o V*Ay) = true iff V¥(() = true and V*(y) = true

e Sometimes add T for true and L for false. o Vepy) = false i VH(0) = true and V() = false




Truth Tables

-P | PAQ | PvQ | P—>Q

R A I
CH RN R PO
1
—
-
=

Each row corresponds to different valuation

Categories of WEFs

* A formula ¢ is valid, or a tautology, if for all
valuations V, we have V*(¢) = true.

* A formula ¢ is satisfiable if for some valuation V,
we have V¥*(¢) = true.

* A formula ¢ is falsifiable if for some valuation V,
we have V*(¢) = false.

* A formula ¢ is unsatisfiable, or a contradiction, if
for all valuations V , we have V*(¢) = false.

Semantic Entailment

* dy, ..., On = P iff for every valuation V s.t.
V¥ = ... = V¥(dn) = true, then V¥() = true

e Example: P=Q —P

* Read ¢, ..., Ou =Y as Oy, ..., On semantically entails

* Hence, = iff y is a tautology.

e Show: ¢I, ey q)n, ¢) =Y iff(l)l, ey q)n = q) —

Proof Rules

e Syntactically determined set of rules for
inferring conclusion from hypotheses.

* Rules provide kind of meaning for connectives

e Different texts use different rules -- all equivalent!

* Gy G =P

 Constructing proof is creative

* Not clear what rules to apply




Rules for A

Rules for -, —

¢
Al _|_.(i) (I)
q) MP € i
O ¢
b by o o= W p—p
A€y A€, e MT*
¢ v v -9
modus ponens modus tolens
*derived rules
— Introduction v Rules
¢ ¢
Vi q)
v PV Y :
lp ve
V1 X
If from an assumption of ¢, one can deduce 1, vy

then one can deduce p—>1)

Le., bypothesis of ¢ is discharged in proof:




Negation & L-Rules

b A=

-€

le

_\i

The basic rules of natural deduction:

introduction elimination
¢ P GNP dNY
A — AL ——— Aey —— Aez
PNAY o) [}
[ P ovey XX
\ ——— Vi - — Vip —_— Ve
oV Y oV Y X
¢
i o oo
— — —i —_— —e
b — P Y
j
= ¢ —o
—¢ h T
. . €
€ (no introduction rule for L) 5L
- .
- P Classical only

Proofs

e Ordered list of steps where each step justified
as premise or by proof rule from earlier steps.

* Show + ~(p A =)

I O A=)
2. ¢
3. ¢
4. L

assumption

2,3, €

5. P A =P) 174, i

Always indicate proof rule
and steps used to get new wif
Use boxes for subproofs to be
discharged

Distinction between
bypothesis and assumption

Example Proofs

* Be careful with proof boxes:

e Can't use internal steps when reasoning outside the box.
* Typically work backwards!

e Show
cOvVYEYvo
° Hd— W —=9
o= =P EY ==y




Constructivist vs Classical

Some useful derived rules: LOglCS
b= o
e Constructivists don’t believe in —-e rule:

—¢
. * oo
1 * Don’t believe -+ ¢ v -¢ except in special cases.
10} PBC\ oV —¢p LEM e Don’t accept proof by contradiction!

Classical only * Give constructive proof of ¢ v P = =(=p A )

Troublesome Proof

¢ Are there two irrational numbers, 2 and 4, such
that 4 is rational?

e Notice (V2¥2)¥2 = V22 =2
e (Case 1: ¥2V2 is rational and take 2 = 6 = V2
e Case 2: V2'2 is irrational and take @ = v2V2, 6 =2

 Constructivist rejects because can’t tell which
alternative is true.




