CSCI 081 Spring 2015

Homework 8

Due midnight, Thursday, 4/2/2015

Please submit your homework solutions online at http://www.dci.pomona.edu/tools-bin/cs081upload.php. If you have more than one file to be turned in, please put it in a folder and zip it up before turning it in.

1. (10 points) **Program Proofs**

Problem 4.3.13 from H & R page 301. Please show the proof carefully in the same style as the proof in Example 4.17 on page 286. Hint: Consider a loop invariant of x == y+a.

Be careful to use the Imply rule in the correct direction. In the past many students have lost points by proving implications in the wrong direction!

2. (15 points) More program proofs

This exercise is about integer division. Suppose that a and b are positive integers. If we divide a by b we get a quotient q and a remainder r satisfying

```
a = bq + r and 0 \le r \le b.
```

We use Python/Java/C notation for the remainder, a % b. We say that b divides a, written b|a, if the remainder is zero. Notice that b|a implies $b \le a$.

Further, a number d divides both a and b if and only if d divides both b and r.

The greatest common divisor of a and b, written gcd(a, b), is the largest element of the set $\{d \mid 0 < d, d \mid a, \text{ and } d \mid b\}$.

(a) Annotate the block of code in Figure 1 to verify that it is a correct Hoare triple. A full box-and-line proof is not necessary; just annotate each step and give a brief reason why the annotation is correct.

```
 \begin{cases} 0 < B < A \rbrace \\ \text{a := A;} \\ \text{b := B;} \\ \text{while } (0 < \text{b}) \ \bigl\{ \\ \text{t := a;} \\ \text{a := b;} \\ \text{b := t \% b;} \, \bigr\} \\ \bigl\{ \text{b} = 0 \land \forall d \left( 0 < d \rightarrow \left( d | \text{a} \land d | \text{b} \leftrightarrow d | A \land d | B \right) \right) \bigr\}
```

Figure 1: An instance of Euclid's algorithm to compute greatest common divisors.

Until now, we have avoided using the symbol for logical equivalence. The notation $\phi \leftrightarrow \psi$ is an abbreviation for $(\phi \to \psi) \land (\psi \to \phi)$.

(b) Argue informally that the postcondition implies $a = \gcd(A, B)$.

3. (10 points) **Program Proofs**

Problem 4.4.1a from H & R page 303.