Today: Context-free Grammars

® CFLs in the hierarchy of languages

® What is a grammar?
Lecture 6: Context-free

® Formal definition CFGs

Grammars ® Examples of CFLs
CscCl 8l ® Closure properties of CLFs
Spring, 2013
® Parse trees and how they relate to
Jason Waterman

derivations

® Ambiguous grammars

Language Classes Language Classes

SD Languages

SD Languages

D Languages D Languages
Today’s

Context-Free lecture Context-Free

Languages Languages

Regular
Languages

Regular
Languages
FSMs FSMs

Turing Machines Turing Machines

Language Classes Language Classes

SD Languages
Today’s
lecture

More general and more
expressive than regular
languages

SD Languages

D Languages D Languages
Context-Free

Every regular language can
Languages

be expressed by a context-
free language

Context-Free
Languages

Regular
Languages

Regular
Languages

Wednesday’s
Lecture

FSMs FSMs

Turing Machines Turing Machines

CFGs Applications

® CFGs were first used to study human
languages

® A large portion of the English language can be
described by a CFG

® For most programming languages, the set of
syntactically legal statements is a CFL

® Markup languages like HTML and XML

® Used as the basis for compiler design and
implementation

What is a Grammar?

Rewrite system: a list of rules and an algorithm for applying
them

simple-rewrite(R:rewrite system, w initial string) =
I. Set working-string to w
2. Until told by R to halt do:

2.1. Match the left-hand side of some rule against some part of of
working-string.

2.2. Replace the matched part of working-string with the right-hand
side of the rule that was matched

3. Return working-string

If simple-rewrite(R,w) can return some string s then R can derive
s from w

A rewrite system used to define a language is called a grammar

What is a Grammar?

® Rewrite system: a list of rules and an algorithm for applying

them
How do we decide]

® simple-rewrite(R:rewrite system when to halt?

I, Set working-string to w
2. Until told by R to halt do:

2.1. Match the left-hand side of some rule against some part of of
working-string.

2.2. Replace the matched part of working-string with the right-hand
side of the rule that was matched

3. Return working-string

® [f simple-rewrite(R,w) can return some string s then R can derive
s from w

® A rewrite system used to define a language is called a grammar

What is a Grammar?

Rewrite system: a list of rules and an algorithm for applying

them
How do we decide]

simple-rewrite(R:rewrite system| when to halt?

I. Set working-string to w
2. Until told by R to halt do:

2.1. Match the left
working-string.

d side of some rule against some part of of

When matching multiple rules

2.2. Replace the matched N X
which one do we pick?

side of the rule that

3. Return working-string

If simple-rewrite(R,w) can return some string s then R can derive
s from w

A rewrite system used to define a language is called a grammar

Context-free Grammars

® Formally, a context-free grammar G is a
quadruple(V, X, R, S), where:

® Vs the rule alphabet (containing both terminals
and non-terminals)

® 3 (the set of terminals) is a subset of V
® R (the set of rules) is finite subset of (V -
3) xV*

® S (the start symbol) can be any element of
V-Z

Derivability relation

® Given a grammar G, define x = y to be the binary
relation derives-in-one-step such that:
o vxye V:(x=y iff x = aAB,y = ayP, and there exists a rule A = y
in Rg)
® Any sequence of the form: wo=w;=w2=...=w, is called a
derivation
® = is the reflexive, transitive closure of = and is
called the derives relation

® The language generated by G, denoted L(G), is the set of all
string terminals that an be derived from a starting symbol
S using zero or more applications of rules in G

Balanced Parenthesis Language

® Bal ={w e {),(,}" : the parenthesis are
balanced}

® Not regular but is context free
e G=({S),(}R,S), where:
e R={S—(5),S—SS5S— &

Example CFG:A"B"

® AB"={a"b":n > 0}
® Not regular
e G={{S,a,b},{a,b},R,S}
® What does this grammar generate?

® What is R?

Example CFG:A"B"

e AB"={a"b":n = 0}

® Not regular

e G={{S,ab}{ab},R,S}
® What does this grammar generate?
® What is R?
® R={S —aSbh,S — &}

Regular vs. Context-free Grammars

® In a regular grammar, every rule must have:
® A left hand side that is a single nonterminal

® A right hand side that is € or a single terminal or
a single terminal followed by a single
nonterminal

® In a context-free grammar, every rule must
have:

® A left hand side that is a single nonterminal

® A right hand side

Regular vs. Context-free Grammars

® In a regular grammar, every rule must have:
® A left hand side that is a single nonterminal

® A right hand side that is € or a single terminal or
a single terminal followed by a single
nonterminal

® |n a context-fre These extra conditions make
regular grammars less expressive
and a subset of CFGs

at Is a single nontermina

have:
® A left hand side
® A right hand side

Closure Properties of CFGs

o Union

® Suppose we have grammars for two languages, with
start symbols S and T

® Rename variables as needed to ensure that the two
grammars don’t share any variables

® Then construct a grammar for the union of the
languages, with start symbol Z, by taking all the rules
from both grammars and addinga new rule Z - S| T

o Concatenation

® Similar to union: rename variables as needed, take all
rules from both grammars, and add new rule Z — ST

Closure Pr’operties of CFGs Closure Properties of CFGs: Substitution

® [f a substitution s assigns a CFL to every symbol

® Kleene Star in the alphabet of CFL L, then s(L) is a CFL
® Suppose we have a grammar for the language L, ® Take a grammar for L and a grammar for each
with start symbol S. The grammar for L*, with language L. = s(a)
start symbol T, contains all the rules from the ® Make sure all the variables of all these grammars are
original grammar plus the rule T TS | € different
® String Reversal ® Replace each terminal a in the production rules for L

.) by Sq, the start symbol of the grammar for L,
® Reverse the character string on the righthand
side of every rule in the grammar ® This replacement allows any string in L, to take the

place of any occurence of a in any string of L

Derivations and Parse Trees Parse Tree Definition
® CFGs do more than just describe the set of strings ® A parse tree derived by a grammar
in a language G=(V,Z,R,S) is a rooted ordered tree
® They provide a way of assigning an internal ® Every leaf node is labeled with an element of
structure (via their derivations) to the strings they TU{E)
describe

® This allows us to assign meanings to the strings a ® The root node is labeled S

grammar can produce ® Every other node is labeled with some element

® This grammatical structure of a string is captured of V - X (that is a nonterminal symbol)

by a parse tree ® |f mis a nonleaf node labeled X and the children
® A record of which rules were applied to which of m are labeled x, X2, ... X then R contains the
nonterminals during the string’s derivation rule X = x1, X2, ... Xn
Parse Tree for a Simple Expression Grammar Amb|gu|t)l
® Define Eypr with the following CFG ® For E,yr there is more than one parse tree for

i *
o G=((Eid,+ % {id, + 4, RE) the string2 + 3 * 5
© R={E~E+EE— E*EE — id) ® Why is this a problem?

® Parse tree for 2 + 3 * 5:

£ E E
E E E E
E E E E
E E | | | |
| | i + id id id + id* id
id + id * id 2 3 5 2 3 5
2 3 5

Inherent Ambiguity Unambiguous Expression Grammar

e G’=({ETFid, +%*},{id, +,*}, RE)

® [f there exists a CLF for which no e R=E[EDE+TEoSTToT*ET o F F - id)

unambiguous grammar exists, we call such

| inh I bi ® By adding the levels T (for term) and F (for factor) we
anguages inherently ambiguous have defined a precedence hierarchy

® |t is possible to construct a new grammar G’

® Now there is a single parse tree for id + id * id
that generates L(G) that has less (or no)

. E
ambiguity
E T
® Unfortunately, given a CFG G, determining if |
G is ambiguous is undecidable T T F
F F
[

id + id * id

