
Lecture 6: Context-free
Grammars

CSCI 81
Spring, 2013

Jason Waterman

1

Today: Context-free Grammars

• CFLs in the hierarchy of languages

• What is a grammar?

• Formal definition CFGs

• Examples of CFLs

• Closure properties of CLFs

• Parse trees and how they relate to
derivations

• Ambiguous grammars

2

Language Classes

Context-Free
Languages

PDAs

Regular
Languages

FSMs

D Languages

SD Languages

Turing Machines

3

Language Classes

Context-Free
Languages

PDAs

Regular
Languages

FSMs

D Languages

SD Languages

Turing Machines

Today’s
lecture

4

Language Classes

Context-Free
Languages

PDAs

Regular
Languages

FSMs

D Languages

SD Languages

Turing Machines

Today’s
lecture

Wednesday’s
Lecture

5

Language Classes

Context-Free
Languages

PDAs

Regular
Languages

FSMs

D Languages

SD Languages

Turing Machines

More general and more
expressive than regular
languages

Every regular language can
be expressed by a context-
free language

6

CFGs Applications
• CFGs were first used to study human

languages

• A large portion of the English language can be
described by a CFG

• For most programming languages, the set of
syntactically legal statements is a CFL

• Markup languages like HTML and XML

• Used as the basis for compiler design and
implementation

7

What is a Grammar?
• Rewrite system: a list of rules and an algorithm for applying

them

• simple-rewrite(R:rewrite system, w: initial string) =

1. Set working-string to w

2. Until told by R to halt do:

2.1. Match the left-hand side of some rule against some part of of
working-string.

2.2. Replace the matched part of working-string with the right-hand
side of the rule that was matched

3. Return working-string

• If simple-rewrite(R,w) can return some string s then R can derive
s from w

• A rewrite system used to define a language is called a grammar

8

What is a Grammar?
• Rewrite system: a list of rules and an algorithm for applying

them

• simple-rewrite(R:rewrite system, w: initial string) =

1. Set working-string to w

2. Until told by R to halt do:

2.1. Match the left-hand side of some rule against some part of of
working-string.

2.2. Replace the matched part of working-string with the right-hand
side of the rule that was matched

3. Return working-string

• If simple-rewrite(R,w) can return some string s then R can derive
s from w

• A rewrite system used to define a language is called a grammar

How do we decide
when to halt?

8

What is a Grammar?
• Rewrite system: a list of rules and an algorithm for applying

them

• simple-rewrite(R:rewrite system, w: initial string) =

1. Set working-string to w

2. Until told by R to halt do:

2.1. Match the left-hand side of some rule against some part of of
working-string.

2.2. Replace the matched part of working-string with the right-hand
side of the rule that was matched

3. Return working-string

• If simple-rewrite(R,w) can return some string s then R can derive
s from w

• A rewrite system used to define a language is called a grammar

How do we decide
when to halt?

When matching multiple rules
which one do we pick?

8

Context-free Grammars

• Formally, a context-free grammar G is a
quadruple(V, ∑, R, S), where:

• V is the rule alphabet (containing both terminals
and non-terminals)

• ∑ (the set of terminals) is a subset of V

• R (the set of rules) is finite subset of (V -
∑) × V∗

• S (the start symbol) can be any element of
V - ∑

9

Derivability relation
• Given a grammar G, define x ⇒ y to be the binary

relation derives-in-one-step such that:

• ∀x,y ∈ V∗(x⇒y iff x = !Aβ, y = !"β, and there exists a rule A → "
in RG)

• Any sequence of the form: w0⇒w1⇒w2⇒...⇒wn is called a

derivation

• ⇒∗ is the reflexive, transitive closure of ⇒ and is

called the derives relation

• The language generated by G, denoted L(G), is the set of all
string terminals that an be derived from a starting symbol
S using zero or more applications of rules in G

10

Balanced Parenthesis Language

• Bal = {w ∈ {), (, }∗ : the parenthesis are
balanced}

• Not regular but is context free

• G = ({S,), (}, R, S), where:

• R = {S → (S), S → SS, S → �}

11

Example CFG: AnBn

• AnBn = {anbn : n ≥ 0}

• Not regular

• G = {{S, a, b}, {a, b}, R, S}

• What does this grammar generate?

• What is R?

12

Example CFG: AnBn

• AnBn = {anbn : n ≥ 0}

• Not regular

• G = {{S, a, b}, {a, b}, R, S}

• What does this grammar generate?

• What is R?

• R = {S → aSb, S → �}

13

Regular vs. Context-free Grammars

• In a regular grammar, every rule must have:

• A left hand side that is a single nonterminal

• A right hand side that is � or a single terminal or
a single terminal followed by a single
nonterminal

• In a context-free grammar, every rule must
have:

• A left hand side that is a single nonterminal

• A right hand side

14

Regular vs. Context-free Grammars

• In a regular grammar, every rule must have:

• A left hand side that is a single nonterminal

• A right hand side that is � or a single terminal or
a single terminal followed by a single
nonterminal

• In a context-free grammar, every rule must
have:

• A left hand side that is a single nonterminal

• A right hand side

These extra conditions make
regular grammars less expressive

and a subset of CFGs

14

Closure Properties of CFGs
• Union

• Suppose we have grammars for two languages, with
start symbols S and T

• Rename variables as needed to ensure that the two
grammars don’t share any variables

• Then construct a grammar for the union of the
languages, with start symbol Z, by taking all the rules
from both grammars and adding a new rule Z → S | T

• Concatenation

• Similar to union: rename variables as needed, take all
rules from both grammars, and add new rule Z → ST

15

Closure Properties of CFGs

• Kleene Star

• Suppose we have a grammar for the language L,
with start symbol S. The grammar for L∗, with
start symbol T, contains all the rules from the
original grammar plus the rule T→ TS | �

• String Reversal

• Reverse the character string on the righthand
side of every rule in the grammar

16

Closure Properties of CFGs: Substitution

• If a substitution s assigns a CFL to every symbol
in the alphabet of CFL L, then s(L) is a CFL

• Take a grammar for L and a grammar for each
language La = s(a)

• Make sure all the variables of all these grammars are
different

• Replace each terminal a in the production rules for L
by Sa, the start symbol of the grammar for La

• This replacement allows any string in La to take the
place of any occurence of a in any string of L

17

Derivations and Parse Trees
• CFGs do more than just describe the set of strings

in a language

• They provide a way of assigning an internal
structure (via their derivations) to the strings they
describe

• This allows us to assign meanings to the strings a
grammar can produce

• This grammatical structure of a string is captured
by a parse tree

• A record of which rules were applied to which
nonterminals during the string’s derivation

18

Parse Tree Definition
• A parse tree derived by a grammar

G=(V, ∑, R, S) is a rooted ordered tree

• Every leaf node is labeled with an element of
∑⋃{�}

• The root node is labeled S

• Every other node is labeled with some element
of V - ∑ (that is a nonterminal symbol)

• If m is a nonleaf node labeled X and the children
of m are labeled x1, x2, ... xn then R contains the
rule X → x1, x2, ... xn

19

Parse Tree for a Simple Expression Grammar

• Define Expr with the following CFG

• G = ({E, id, +, *}, {id, +, *}, R,E)

• R = {E → E + E, E → E * E, E → id}

• Parse tree for 2 + 3 * 5:

E

E

E

E

E

id
3

id
2

id
5

*+

20

Ambiguity
• For Expr there is more than one parse tree for

the string 2 + 3 * 5

• Why is this a problem?

E

E

E

E

E

id
3

id
2

id
5

*+ id
5

E E

id
2

id
3

+

E

EE

*

21

Inherent Ambiguity

• If there exists a CLF for which no
unambiguous grammar exists, we call such
languages inherently ambiguous

• It is possible to construct a new grammar G’
that generates L(G) that has less (or no)
ambiguity

• Unfortunately, given a CFG G, determining if
G is ambiguous is undecidable

22

Unambiguous Expression Grammar

• G’ = ({E, T, F, id, +, *}, {id, +, *}, R,E)

• R = {E → E + T, E → T, T → T * F, T → F, F → id}

• By adding the levels T (for term) and F (for factor) we
have defined a precedence hierarchy

• Now there is a single parse tree for id + id * id

E

T

T

F

E

*+

T

id

F

idid

F

23

