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CFGs Applications

® CFGs were first used to study human
languages

® A large portion of the English language can be
described by a CFG

® For most programming languages, the set of
syntactically legal statements is a CFL

® Markup languages like HTML and XML

® Used as the basis for compiler design and
implementation

What is a Grammar?

Rewrite system: a list of rules and an algorithm for applying
them

simple-rewrite(R:rewrite system, w initial string) =
I.  Set working-string to w
2. Until told by R to halt do:

2.1. Match the left-hand side of some rule against some part of of
working-string.

2.2. Replace the matched part of working-string with the right-hand
side of the rule that was matched

3. Return working-string

If simple-rewrite(R,w) can return some string s then R can derive
s from w

A rewrite system used to define a language is called a grammar
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Context-free Grammars

® Formally, a context-free grammar G is a
quadruple(V, X, R, S), where:

® Vs the rule alphabet (containing both terminals
and non-terminals)

® 3 (the set of terminals) is a subset of V
® R (the set of rules) is finite subset of (V -
3) xV*

® S (the start symbol) can be any element of
V-Z

Derivability relation

® Given a grammar G, define x = y to be the binary
relation derives-in-one-step such that:
o vxye V:(x=y iff x = aAB,y = ayP, and there exists a rule A = y
in Rg)
® Any sequence of the form: wo=w;=w2=...=w, is called a
derivation
® = is the reflexive, transitive closure of = and is
called the derives relation

® The language generated by G, denoted L(G), is the set of all
string terminals that an be derived from a starting symbol
S using zero or more applications of rules in G




Balanced Parenthesis Language

® Bal ={w e {),(,}" : the parenthesis are
balanced}

® Not regular but is context free
e G=({S),(}R,S), where:
e R={S—(5),S—SS5S— &

Example CFG:A"B"

® AB"={a"b":n > 0}
® Not regular
e G={{S,a,b},{a,b},R,S}
® What does this grammar generate?

® What is R?

Example CFG:A"B"

e AB"={a"b":n = 0}

® Not regular

e G={{S,ab}{ab},R,S}
® What does this grammar generate?
® What is R?
® R={S —aSbh,S — &}

Regular vs. Context-free Grammars

® In a regular grammar, every rule must have:
® A left hand side that is a single nonterminal

® A right hand side that is € or a single terminal or
a single terminal followed by a single
nonterminal

® In a context-free grammar, every rule must
have:

® A left hand side that is a single nonterminal

® A right hand side
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® |n a context-fre These extra conditions make
regular grammars less expressive
and a subset of CFGs
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Closure Properties of CFGs

o Union

® Suppose we have grammars for two languages, with
start symbols S and T

® Rename variables as needed to ensure that the two
grammars don’t share any variables

® Then construct a grammar for the union of the
languages, with start symbol Z, by taking all the rules
from both grammars and addinga new rule Z - S| T

o Concatenation

® Similar to union: rename variables as needed, take all
rules from both grammars, and add new rule Z — ST




Closure Pr’operties of CFGs Closure Properties of CFGs: Substitution

® [f a substitution s assigns a CFL to every symbol

® Kleene Star in the alphabet of CFL L, then s(L) is a CFL
® Suppose we have a grammar for the language L, ® Take a grammar for L and a grammar for each
with start symbol S. The grammar for L*, with language L. = s(a)
start symbol T, contains all the rules from the ® Make sure all the variables of all these grammars are
original grammar plus the rule T TS | € different
® String Reversal ® Replace each terminal a in the production rules for L

. ) by Sq, the start symbol of the grammar for L,
® Reverse the character string on the righthand
side of every rule in the grammar ® This replacement allows any string in L, to take the

place of any occurence of a in any string of L

Derivations and Parse Trees Parse Tree Definition
® CFGs do more than just describe the set of strings ® A parse tree derived by a grammar
in a language G=(V,Z,R,S) is a rooted ordered tree
® They provide a way of assigning an internal ® Every leaf node is labeled with an element of
structure (via their derivations) to the strings they TU{E)
describe

® This allows us to assign meanings to the strings a ® The root node is labeled S

grammar can produce ® Every other node is labeled with some element

® This grammatical structure of a string is captured of V - X (that is a nonterminal symbol)

by a parse tree ® |f mis a nonleaf node labeled X and the children
® A record of which rules were applied to which of m are labeled x, X2, ... X then R contains the
nonterminals during the string’s derivation rule X = x1, X2, ... Xn
Parse Tree for a Simple Expression Grammar Amb|gu|t)l
® Define Eypr with the following CFG ® For E,yr there is more than one parse tree for

i *
o G=((Eid,+ % {id, + 4, RE) the string2 + 3 * 5
© R={E~E+EE— E*EE — id) ® Why is this a problem?

® Parse tree for 2 + 3 * 5:

£ E E
E E E E
E E E E
E E | | | |
| | i + id id id + id* id
id + id * id 2 3 5 2 3 5
2 3 5




Inherent Ambiguity Unambiguous Expression Grammar

e G’=({ETFid, +%*},{id, +,*}, RE)

® [f there exists a CLF for which no e R=E[EDE+TEoSTToT*ET o F F - id)

unambiguous grammar exists, we call such

| inh I bi ® By adding the levels T (for term) and F (for factor) we
anguages inherently ambiguous have defined a precedence hierarchy

® |t is possible to construct a new grammar G’

® Now there is a single parse tree for id + id * id
that generates L(G) that has less (or no)

. E
ambiguity
E T
® Unfortunately, given a CFG G, determining if |
G is ambiguous is undecidable T T F
F F
[

id + id * id




