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TM Programming Tips

• Divide work into different phases/subroutines

• Controller has arbitrarily large“finite memory”.

• Squares can be “marked” and “unmarked” in 
finitely many ways. 

•  Take advantage of TM extensions.

TM Variants

• Showed last time that various strengthenings 
don’t help in computability (though do in 
speed).

• Adding extra tapes

• Making non-deterministic

TM’s

• So far built “dedicated machines”.  

• Only run one program

• Specified by transition on states

• Can TM’s be general-purpose computers?

• Can we create a “universal” TM with an arbitrary 
program and have it execute the program?

• What kind of program?

UTM

• Input:

• program  input string

• where program is TM description

• Output

• result of executing program on input string

Defining UTM

• Two steps:

• Define encoding for arbitrary TM

• Describe operation when given input of TM M and 
input string w



Encoding TM

• States:  Let i = !log2(|K|)"

• Number states sequentially as i bit numbers 
letting start state be 0...0.

• For each state t, let t’ be its associated number.

• If t is halting state y, assign code yt’

• If t is halting state n, assign code nt’

• If t any other state, assign code qt’

Example Encoding States

• Suppose M has 9 states.  !log2(9)" = 4

• Let s’ = q0000, 

• Remaining states (where y is 3 and n is 4):%

• q0001, q0010, y0011, n0100, q0101, q0110, q0111, q1000

Encoding Tape Alphabet

• Encode in form ak where k is j = !log2(|Γ|)" bit 
number

• Example: Γ = {, a, b, c}.    j = 2.

•   ⇒% a00

• a   ⇒ % a01

• b   ⇒ %a10

• c   ⇒ % a11

Transitions

• The transitions:    %

• (state, input, state, output, move)

• Example:  %   (q000,a000,q110,a000,→)

• Specify s as q000.

• Specify M as a list of transitions.

Special Case

Encode as (q0)

Encoding Example
Consider M = ({s, q, h}, {a, b, c}, {, a, b, c}, δ, s, {h}):

<M> = (q00,a00,q01,a00,→), (q00,a01,q00,a10,→), 
           (q00,a10,q01,a01, ←), (q00,a11,q01,a10,←), 
           (q01,a00,q00,a01,→), (q01,a01,q01,a10,→), 

      (q01,a10,q01,a11,←), (q01,a11,h11,a01,←)

state symbol δ

s  (q,,, →)

s a (s,b,→)

s b (q,a, ←)

s c (q,b, ←)

q  (s,a,, →)

q a (q,b,→)

q b (q,b, ←)

q c (h,a, ←)

state/symbol representation

s q00

q q01

h h10

 a00

a a01

b a10

c a11



Enumerating TMs

• Theorem: There exists an infinite lexicographic 
enumeration of:
1. All syntactically valid TMs.

2. All syntactically valid TMs with specific input alphabet 
Σ.

3. All syntactically valid TMs with specific input alphabet Σ 
and specific tape alphabet Γ.     

Proof

• Fix Σ = {(, ), a, q, y, n, 0, 1, comma, →, ←}, 
ordered as listed.  Then:

• Lexicographically enumerate the strings in Σ*.

• As each string s is generated, check to see whether it is a 
syntactically valid Turing machine description.  If it is, 
output it.

• To restrict enumeration to symbols in Σ & Γ, check, in 
step 2, that only alphabets of appropriate sizes allowed.

• Can now talk about the ith Turing machine

Side note

• Can talk about algorithmically modifying TM’s:

• Example:  Make an extra copy of input and 
then run <M> on new copy.

Specifying UTM

• On input <M, w>, U must:

• Halt iff M halts on w.

• If M is a deciding or semideciding machine, then:

• If M accepts, accept.

• If M rejects, reject.

• If M computes a function, then U(<M, w>) must equal 
M(w).

Implementation

• ... as a 3-tape TM:

• Tape 1: M’s tape.  

• Tape 2: <M>, the “program” that U is running.

• Tape 3: M’s state.

Implementation

• Initialization of U:

• Copy <M> onto tape 2.

• Look at <M>, figure out # of states, and write the encoding of 
state s on tape 3.

• After initialization:



Simulation

• Simulate the steps of M :
1. Until M would halt do:

1.1.Scan tape 2 for a transition matching the current state, input pair. 

1.2.Perform the associated action, by changing tapes 1 and 3 (state).  If 
necessary, extend the tape.

1.3.If no matching quintuple found, halt.  Else loop.

2. Report the same result M would report.

• How long does U take?

Universal FSM??

• Can we write FSM, M, that accepts

• L = {<F, w> : F is a FSM, and w ∈ L(F) }?

How big is UTM?
• The first constructed by Turing. 

• Shannon showed any UTM could be converted either to 
a 2-symbol machine or to a 2-state machine 

• Minsky (1960): 7-state 6-symbol machine. 

• Watanabe (1961): 8-state 5-symbol machine. 

• Minsky (1962): 7-state 4-symbol machine. 

• Rogozhin (1996) 4-state 6-symbol machine 

• Wolfram & Reed(2002): 2-state 5-symbol machine. 

• Smith & Wolfram(2007): 2-state 3-symbol machine. 

• No 2-state 2-symbol UTM exists. 

What is more powerful?

• Are we done?  Is there more powerful model?

• Lots of languages we can’t recognize with TM’s

• Countably infinite number of Turing machines since we 
can lexicographically enumerate all the strings that 
correspond to syntactically legal Turing machines.

• There is an uncountably infinite number of languages 
over any nonempty alphabet.  

• Many more languages than Turing  machines.

Historical Context

• David Hilbert’s lecture to 1900 International 
Congress of Mathematics in Paris.

• Presented 23 problems to influence course of 
20th century mathematics (only 10 at meeting)

CS & Logic Relevant:

1.  Continuum hypothesis:  Is there a set with 
cardinality between that of integers and reals?

2.  Prove that the axioms of arithmetic are 
consistent.

10. Find an algorithm to determine whether a 
given polynomial Diophantine equation with 
integer coefficients has an integer solution.



All Had Surprising Results

1.  Continuum hypothesis:  Independent of 
axioms of set theory  (K. Gödel & P. Cohen)

2.  Consistency of arithmetic: Not provable from 
within arithmetic (K. Gödel)

10. Find an algorithm to determine Diophantine 
solution:  Undecidable. (Y. Matiyasevich, J. 
Robinson).

Solns to 1 & 10 resulted in awards of Fields Medals

Hilbert Again

• Entscheidungsproblem posed by David Hilbert 
in 1928.

• Find an algorithm that will take as input a description of 
a formal language and a mathematical statement in the 
language and produce as output either "True" or "False" 
according to whether the statement is true or false.

• If find an algorithm, then no problem, but ...

• how do you show there is no such algorithm?

What is an algorithm?

• Alonzo Church (w/S. Kleene) 1936: λ-calculus

• Alan Turing 1936: Turing machine

• Negative answer to the Entscheidungsproblem

• Church 1935-36

• Turing (independently) 1936-37 -- reducing to Halting 
Problem

• Both influenced by Gödel’s proof of incompleteness

Church-Turing Thesis

• All formalisms powerful enough to describe 
everything we think of as a computational 
algorithm are equivalent. 

• Can’t prove it because don’t have a list of all 
possible formalisms.  

• But have shown it for all proposed formalisms.

Proposed Formal Models

• Modern computers (with unbounded memory)

• Lambda calculus

• Partial recursive functions

• Tag systems (FSM plus FIFO queue)

• Unrestricted grammars:

• aSa → B

Proposed Formal Models

• Post production systems

• Markov algorithms

• Conway’s Game of Life

• One dimensional cellular automata

• DNA-based computing 

• Lindenmayer systems

• While language


