
Lecture 29: Universal Turing
Machines

CSCI 81
Spring, 2012

Kim Bruce

TM Programming Tips

• Divide work into different phases/subroutines

• Controller has arbitrarily large“finite memory”.

• Squares can be “marked” and “unmarked” in
finitely many ways.

• Take advantage of TM extensions.

TM Variants

• Showed last time that various strengthenings
don’t help in computability (though do in
speed).

• Adding extra tapes

• Making non-deterministic

TM’s

• So far built “dedicated machines”.

• Only run one program

• Specified by transition on states

• Can TM’s be general-purpose computers?

• Can we create a “universal” TM with an arbitrary
program and have it execute the program?

• What kind of program?

UTM

• Input:

• program input string

• where program is TM description

• Output

• result of executing program on input string

Defining UTM

• Two steps:

• Define encoding for arbitrary TM

• Describe operation when given input of TM M and
input string w

Encoding TM

• States: Let i = !log2(|K|)"

• Number states sequentially as i bit numbers
letting start state be 0...0.

• For each state t, let t’ be its associated number.

• If t is halting state y, assign code yt’

• If t is halting state n, assign code nt’

• If t any other state, assign code qt’

Example Encoding States

• Suppose M has 9 states. !log2(9)" = 4

• Let s’ = q0000,

• Remaining states (where y is 3 and n is 4):%

• q0001, q0010, y0011, n0100, q0101, q0110, q0111, q1000

Encoding Tape Alphabet

• Encode in form ak where k is j = !log2(|Γ|)" bit
number

• Example: Γ = {, a, b, c}. j = 2.

• ⇒% a00

• a ⇒ % a01

• b ⇒ %a10

• c ⇒ % a11

Transitions

• The transitions: %

• (state, input, state, output, move)

• Example: % (q000,a000,q110,a000,→)

• Specify s as q000.

• Specify M as a list of transitions.

Special Case

Encode as (q0)

Encoding Example
Consider M = ({s, q, h}, {a, b, c}, {, a, b, c}, δ, s, {h}):

<M> = (q00,a00,q01,a00,→), (q00,a01,q00,a10,→),
 (q00,a10,q01,a01, ←), (q00,a11,q01,a10,←),
 (q01,a00,q00,a01,→), (q01,a01,q01,a10,→),

 (q01,a10,q01,a11,←), (q01,a11,h11,a01,←)

state symbol δ

s (q,,, →)

s a (s,b,→)

s b (q,a, ←)

s c (q,b, ←)

q (s,a,, →)

q a (q,b,→)

q b (q,b, ←)

q c (h,a, ←)

state/symbol representation

s q00

q q01

h h10

 a00

a a01

b a10

c a11

Enumerating TMs

• Theorem: There exists an infinite lexicographic
enumeration of:
1. All syntactically valid TMs.

2. All syntactically valid TMs with specific input alphabet
Σ.

3. All syntactically valid TMs with specific input alphabet Σ
and specific tape alphabet Γ.

Proof

• Fix Σ = {(,), a, q, y, n, 0, 1, comma, →, ←},
ordered as listed. Then:

• Lexicographically enumerate the strings in Σ*.

• As each string s is generated, check to see whether it is a
syntactically valid Turing machine description. If it is,
output it.

• To restrict enumeration to symbols in Σ & Γ, check, in
step 2, that only alphabets of appropriate sizes allowed.

• Can now talk about the ith Turing machine

Side note

• Can talk about algorithmically modifying TM’s:

• Example: Make an extra copy of input and
then run <M> on new copy.

Specifying UTM

• On input <M, w>, U must:

• Halt iff M halts on w.

• If M is a deciding or semideciding machine, then:

• If M accepts, accept.

• If M rejects, reject.

• If M computes a function, then U(<M, w>) must equal
M(w).

Implementation

• ... as a 3-tape TM:

• Tape 1: M’s tape.

• Tape 2: <M>, the “program” that U is running.

• Tape 3: M’s state.

Implementation

• Initialization of U:

• Copy <M> onto tape 2.

• Look at <M>, figure out # of states, and write the encoding of
state s on tape 3.

• After initialization:

Simulation

• Simulate the steps of M :
1. Until M would halt do:

1.1.Scan tape 2 for a transition matching the current state, input pair.

1.2.Perform the associated action, by changing tapes 1 and 3 (state). If
necessary, extend the tape.

1.3.If no matching quintuple found, halt. Else loop.

2. Report the same result M would report.

• How long does U take?

Universal FSM??

• Can we write FSM, M, that accepts

• L = {<F, w> : F is a FSM, and w ∈ L(F) }?

How big is UTM?
• The first constructed by Turing.

• Shannon showed any UTM could be converted either to
a 2-symbol machine or to a 2-state machine

• Minsky (1960): 7-state 6-symbol machine.

• Watanabe (1961): 8-state 5-symbol machine.

• Minsky (1962): 7-state 4-symbol machine.

• Rogozhin (1996) 4-state 6-symbol machine

• Wolfram & Reed(2002): 2-state 5-symbol machine.

• Smith & Wolfram(2007): 2-state 3-symbol machine.

• No 2-state 2-symbol UTM exists.

What is more powerful?

• Are we done? Is there more powerful model?

• Lots of languages we can’t recognize with TM’s

• Countably infinite number of Turing machines since we
can lexicographically enumerate all the strings that
correspond to syntactically legal Turing machines.

• There is an uncountably infinite number of languages
over any nonempty alphabet.

• Many more languages than Turing machines.

Historical Context

• David Hilbert’s lecture to 1900 International
Congress of Mathematics in Paris.

• Presented 23 problems to influence course of
20th century mathematics (only 10 at meeting)

CS & Logic Relevant:

1. Continuum hypothesis: Is there a set with
cardinality between that of integers and reals?

2. Prove that the axioms of arithmetic are
consistent.

10. Find an algorithm to determine whether a
given polynomial Diophantine equation with
integer coefficients has an integer solution.

All Had Surprising Results

1. Continuum hypothesis: Independent of
axioms of set theory (K. Gödel & P. Cohen)

2. Consistency of arithmetic: Not provable from
within arithmetic (K. Gödel)

10. Find an algorithm to determine Diophantine
solution: Undecidable. (Y. Matiyasevich, J.
Robinson).

Solns to 1 & 10 resulted in awards of Fields Medals

Hilbert Again

• Entscheidungsproblem posed by David Hilbert
in 1928.

• Find an algorithm that will take as input a description of
a formal language and a mathematical statement in the
language and produce as output either "True" or "False"
according to whether the statement is true or false.

• If find an algorithm, then no problem, but ...

• how do you show there is no such algorithm?

What is an algorithm?

• Alonzo Church (w/S. Kleene) 1936: λ-calculus

• Alan Turing 1936: Turing machine

• Negative answer to the Entscheidungsproblem

• Church 1935-36

• Turing (independently) 1936-37 -- reducing to Halting
Problem

• Both influenced by Gödel’s proof of incompleteness

Church-Turing Thesis

• All formalisms powerful enough to describe
everything we think of as a computational
algorithm are equivalent.

• Can’t prove it because don’t have a list of all
possible formalisms.

• But have shown it for all proposed formalisms.

Proposed Formal Models

• Modern computers (with unbounded memory)

• Lambda calculus

• Partial recursive functions

• Tag systems (FSM plus FIFO queue)

• Unrestricted grammars:

• aSa → B

Proposed Formal Models

• Post production systems

• Markov algorithms

• Conway’s Game of Life

• One dimensional cellular automata

• DNA-based computing

• Lindenmayer systems

• While language

