Lecture 29: Universal Turing Machines

CSCI 8i
Spring, 2012
Kim Bruce

TM Variants

- Showed last time that various strengthenings don't help in computability (though do in speed).
- Adding extra tapes
- Making non-deterministic

UTM

- Input:
- program input string
- where program is TM description
- Output
- result of executing program on input string

TM Programming Tips

- Divide work into different phases/subroutines
- Controller has arbitrarily large"finite memory".
- Squares can be "marked" and "unmarked" in finitely many ways.
- Take advantage of TM extensions.

TM's

- So far built "dedicated machines".
- Only run one program
- Specified by transition on states
- Can TM's be general-purpose computers?
- Can we create a "universal" TM with an arbitrary program and have it execute the program?
- What kind of program?

Defining UTM

- Two steps:
- Define encoding for arbitrary TM
- Describe operation when given input of TM M and input string w

Encoding TM

- States: Let $\mathrm{i}=\left\lceil\log _{2}(\mid \mathrm{K})\right\rceil$
- Number states sequentially as i bit numbers letting start state be o...o.
- For each state t, let t^{\prime} be its associated number.
- If t is halting state y , assign code yt '
- If t is halting state n , assign code $n t^{\prime}$
- If t any other state, assign code qt'

Encoding Tape Alphabet

- Encode in form ak where k is $\mathrm{j}=\left\lceil\log _{2}(|\Gamma|)\right\rceil$ bit number
- Example: $\Gamma=\{\square, a, b, c\} . j=2$.
- $] \Rightarrow$ aоо
- a \Rightarrow aoi
- b \Rightarrow aго
- c \Rightarrow aiI

Special Case

Encode as (qo)

Example Encoding States

- Suppose M has 9 states. $\left\lceil\log _{2}(9)\right\rceil=4$
- Let $s^{\prime}=q o o o o$,
- Remaining states (where y is 3 and n is 4):
- qooor, qooro, yooir, noroo, qoior, qoiro, qoiri, qrooo

Transitions

- The transitions:
- (state, input, state, output, move)
- Example: (qooo,aooo,qıı,aooo, \rightarrow)
- Specify s as qooo.
- Specify M as a list of transitions.

Encoding Example

Consider $\mathrm{M}=(\{\mathrm{f}, \mathrm{q}, \mathrm{h}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\square, \mathrm{a}, \mathrm{b}, \mathrm{c}\}, \delta, \mathrm{s},\{\mathrm{h}\}):$

state	symbol	δ
s	-	$(q, \square), \rightarrow$
s	a	(s, b, \rightarrow)
s	b	(q,a,,$\ldots)$
s	c	(q, b, \leftarrow)
${ }^{9}$	-	$(s, \mathrm{a}, \mathrm{l})$
q	a	(q, b, \rightarrow)
q	b	(q, b, \leftarrow)
q	c	(h, a, \leftarrow)

samemel	${ }_{\text {repemamion }}$
,	${ }^{90}$
¢	${ }_{61} 9$
"	no
-	00
-	${ }^{01}$
b	${ }^{10}$
\bigcirc	${ }^{11}$

$<\mathrm{M}>=($ qoo,aoo,qor,aoo, \rightarrow), (qoo,aor,qoo,aıo, \rightarrow),
(qоo,aıo,qоı,aоı, \leftarrow), (qоо,aıı,qoı,aıo, $\leftarrow)$, (qoi,aoo,qoo,aoi, \rightarrow), (qoi,aor, qoi,aio, \rightarrow), (qoı,aıo,qoı,aıı, $\leftarrow),($ qoı,aıı,hıı,aoı, $\leftarrow)$

Enumerating TMs

- Theorem: There exists an infinite lexicographic enumeration of:
I. All syntactically valid TMs.

2. All syntactically valid TMs with specific input alphabet Σ.
3. All syntactically valid TMs with specific input alphabet Σ and specific tape alphabet Γ.

Side note

- Can talk about algorithmically modifying TM's:

- Example: Make an extra copy of input and then run $<\mathrm{M}>$ on new copy.

Implementation

- ... as a 3 -tape TM:
- Tape i: M's tape.
- Tape 2 : $<\mathrm{M}>$, the "program" that U is running.
- Tape 3: M's state.

Proof

- Fix $\Sigma=\{(),$, a, q, y, n, o, i, comma, $\rightarrow, \leftarrow\}$, ordered as listed. Then:
- Lexicographically enumerate the strings in Σ^{*}.
- As each string s is generated, check to see whether it is a syntactically valid Turing machine description. If it is, output it.
- To restrict enumeration to symbols in $\Sigma \& \Gamma$, check, in step 2 , that only alphabets of appropriate sizes allowed.
- Can now talk about the ith Turing machine

Specifying UTM

- On input $<\mathrm{M}, \mathrm{w}>, \mathrm{U}$ must:
- Halt iff M halts on w.
- If M is a deciding or semideciding machine, then:
- If M accepts, accept.
- If M rejects, reject.
- If M computes a function, then $\mathrm{U}(<\mathrm{M}, \mathrm{w}>)$ must equal $\mathrm{M}(\mathrm{w})$.

Implementation

-	$<M$ -	--..	--...	--...M,	w -			--w>	\square	\square
	1	0	0	0	0			0		
	-	-	-	-	\square			-		
	1	0	0	0	0			0		
	\square	\square	-	\square	\square			\square		
	1	0	0	0	0			0		

- Initialization of U:
- Copy $<\mathrm{M}>$ onto tape 2.
- Look at $<\mathrm{M}>$, figure out \# of states, and write the encoding of state s on tape 3 .
- After initialization:

]	\square	-	-]	<w-	\cdots	$\ldots w>$	\square	\square
	0	0	0	0	1	0	0		
	<M-	---		\ldots	\square	-	\square		
	1	0	0	0	0	0	0		
	q	0	0	0	\square	-	\square		
	1	-	-	-	\square	-	-		

Simulation

- Simulate the steps of M :
I. Until M would halt do:
I.I.Scan tape 2 for a transition matching the current state, input pair.
I.2.Perform the associated action, by changing tapes 1 and 3 (state). If necessary, extend the tape.
I.3.If no matching quintuple found, halt. Else loop.

2. Report the same result M would report.

- How long does U take?

Universal FSM??

- Can we write FSM, M, that accepts
- $\mathrm{L}=\{\langle\mathrm{F}, \mathrm{w}\rangle: \mathrm{F}$ is a FSM , and $\mathrm{w} \in \mathrm{L}(\mathrm{F})\}$?

What is more powerful?

- Are we done? Is there more powerful model?
- Lots of languages we can't recognize with TM's
- Countably infinite number of Turing machines since we can lexicographically enumerate all the strings that correspond to syntactically legal Turing machines.
- There is an uncountably infinite number of languages over any nonempty alphabet.
- Many more languages than Turing machines.
- Smith \& Wolfram(2007): 2 -state 3 -symbol machine.
- No 2-state 2 -symbol UTM exists.

Historical Context

- David Hilbert's lecture to 190 International Congress of Mathematics in Paris.
- Presented 23 problems to influence course of 20th century mathematics (only io at meeting)

CS \& Logic Relevant:

I. Continuum hypothesis: Is there a set with cardinality between that of integers and reals?
2. Prove that the axioms of arithmetic are consistent.
ı. Find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution.

All Had Surprising Results

I. Continuum hypothesis: Independent of axioms of set theory (K. Gödel \& P. Cohen)
2. Consistency of arithmetic: Not provable from within arithmetic (K. Gödel)
ro. Find an algorithm to determine Diophantine solution: Undecidable. (Y. Matiyasevich, J. Robinson).

Solns to I \& Io resulted in awards of Fields Medals

What is an algorithm?

- Alonzo Church (w/S. Kleene) 1936: λ-calculus
- Alan Turing 1936: Turing machine
- Negative answer to the Entscheidungsproblem
- Church 1935-36
- Turing (independently) 1936-37-- reducing to Halting Problem
- Both influenced by Gödel's proof of incompleteness

Proposed Formal Models

- Modern computers (with unbounded memory)
- Lambda calculus
- Partial recursive functions
- Tag systems (FSM plus FIFO queue)
- Unrestricted grammars:
- $\mathrm{aSa} \rightarrow \mathrm{B}$

Hilbert Again

- Entscheidungsproblem posed by David Hilbert in 1928.
- Find an algorithm that will take as input a description of a formal language and a mathematical statement in the language and produce as output either "True" or "False" according to whether the statement is true or false.
- If find an algorithm, then no problem, but ...
- how do you show there is no such algorithm?

Church-Turing Thesis

- All formalisms powerful enough to describe everything we think of as a computational algorithm are equivalent.
- Can't prove it because don't have a list of all possible formalisms.
- But have shown it for all proposed formalisms.

Proposed Formal Models

- Post production systems
- Markov algorithms
- Conway's Game of Life
- One dimensional cellular automata
- DNA-based computing
- Lindenmayer systems
- While language

