4/30/15

LECTURE 40: GRAPHS

]
Today

-Reading
« JS Chapter 16

* Objectives
* Minimum Spanning Trees

* Announcements
- Updated final exam study guide posted on Piazza
 Apply to be a mentor next year!




]
Dijkstra’s Algorithm

map<int,int> shortest paths(int start,
const map<int,list<pair<int,int> > > & graph) {
map<int,int> parents;
priorityqueue62 frontier;

parents[start]=start;
frontier.push(start, 0);

while (!frontier.is_empty()) {

int v = frontier.top_serialnumber();
int p = frontier.top priority();
frontier.pop();

for (the neighbors (n,w) of v)
if (n == parents[v])
Casel ; // do nothing
else if (n is not in the frontier and has not been visited) {
Case 2 parents[n] = v;
frontier.push(n, p + w);
}else if (p + w < frontier.get priority(n)) {
Case 3 parents[n] = v;
frontier.reduce priority(n, p + w);

}
} // end while

return parents;

}

Minimum Spanning Trees

«G’'=(V’, E') is a subgraph of G=(V,E) if G’ is a graph
and V'’ is a subset of V and E’ is a subset of E

* A spanning tree is a subgraph of G that is a tree and
connects all of the vertices together

* A minimum spanning tree is a spanning tree whose
weight is <= the weight of any other spanning tree

+ Weight is the sum of the weights of the edges

4/30/15



Graph

Spanning Tree

weight = 32

4/30/15



Minimum Spanning Tree

1 2
® (s)
A (NG
weight =17
6 5
4 4 6
3 8
©, O, ®
7 3
4

Prim’s Algorithm

* Finds @ minimum spanning tree
- Connected, weighted (possibly neg.), undirected graph
* Greedy algorithm
* Basic algorithm:
- Initialize MST with randomly chosen vertex
+ Find minimum weight edge that connects MST to vertices not
yetin MST
+ Add this edge/vertex to the MST

4/30/15



4/30/15

Prim’s Algorithm

Data structures:

- Priority queue of nodes ordered by least-cost edge
found so far joining node to MST

- Parent[v]=u where u is the vertex that added v to MST

Graph

1 2

® ® ©
6 5

4 4 6

3 8
© 20} 10,
7 3

4




4/30/15



