# **LECTURE 39: GRAPHS**

# Today

- Reading
  - JS Chapter 16
- Objectives
  - DFS for detecting cycles
  - Dijkstra's Algorithm
  - (Minimum spanning trees)

#### **Detecting Cycles**

- DFS Basic algorithm:
  - Push the start node
  - While the stack is not empty:
    - Pop a node
    - Check if node previously visited
    - If not, mark as visited and push all children
- Keep track of parents to detect cycles

#### **Detecting Cycles**

- A cycle exists if,
  - A node in adjacency list has already been visited but it is not the node that added us to the stack
  - i.e. ancestor (not parent) in search tree already visited
  - Works for undirected graphs



# Single Source Shortest Path

- Starting at node s, find shortest path to all other nodes
- If edges have no weight then can use BFS
  - Shortest path is defined to be the path with fewest edges
- If edges have (non-negative) weights, use Dijkstra's Algorithm
  - Dijkstra's Algorithm is BFS with a priority queue
  - The priority is the distance from the start node to current node
  - Keep track of parent node (i.e. preceding node in the path)

### Single Source Shortest Path



# Minimum Spanning Trees

- G' = (V', E') is a subgraph of G=(V,E) if G' is a graph and V' is a subset of V and E' is a subset of E
- A spanning tree is a subgraph of G that is a tree and connects all of the vertices together
- A minimum spanning tree is a spanning tree whose weight is <= the weight of any other spanning tree</li>
- Weight is the sum of the weights of the edges





