LECTURE 37: GRAPHS

Today

- Reading
 - Bailey Chapter 16 (Graphs)
- Objectives
 - Iterators
 - Graph algorithms

C++ Standard Template Library

- Contains familiar collections
 - vector
 - deque
 - list
 - map
 - priority_queue
 - pair

Iterators

- Iterator type depends on container and const-ness
- Map from name to mailing address:

```
unordered_map<string, string> address_book;
```

Possible iterator declarations:

```
unordered_map<string, string>::iterator itr;
unordered_map<string, string>::const_iterator itr;
```

Iterators

- Operators on iterators
 - itr++ and ++itr
 - *itr returns reference to element being pointed to
- Operators on collection
 - begin() returns iterator to first element
 - end() returns iterator pointing just past last element

Iterators

```
vector<int> vec;

// add some integers to vec

// itr is an iterator over vec
vector<int>::iterator itr = vec.begin();

// use itr in a for-loop to loop over vec
for(; itr != vec.end(); ++itr) {
   cout << *itr << endl;
}</pre>
```

Graphs in Real Life

- Transportation networks
 - Airline flight paths
 - Roads, interstates, etc. (Google maps)
 - Finding shortest route, cheapest route
 - Find route that minimizes fuel costs
- Communication networks
 - Electrical grid, phone networks, computer networks
 - · Minimize cost for building infrastructure
 - · Minimize losses, route packets faster

More Graphs

- Social networks
 - People and relationships (e.g. Facebook)
 - Does this person know this person?
 - Can this person introduce me to that person (e.g. job opportunities)?

Definitions

- A graph is a generalization of a tree
- A graph G is a pair (V,E)
 - V is a finite, non-empty, set of vertices
 - E is the set of edges that connect pairs of vertices
 - Called "vertices" or "nodes"

Example: Undirected Graph

- G = (V,E) where
- V = {A, B, C, D}
- E = {(A, C), (A,B), (A,D), (B,D)}

Example: Directed Graph

- G = (V,E) where
- $V = \{1, 2, 3, 4\}$
- $E = \{(1,2), (2,1), (3,1), (4,3), (4,4), (3,2)\}$

Definitions

- path
- simple path
- path length
- cycle
- simple cycle

Definitions

- self loop
- incident
- adjacent
- degree
- simple graph
- acyclic graph

Connected Components weakly connected c c connected c connected d d c f

Adjacency Matrix

- Store a |V|-by-|V| boolean matrix
 - Entry (i,j) is 1 if there is an edge from vertex i to vertex j
 - · Symmetric if undirected
 - Space? Time to lookup edge? Time to iterate over incident edges?

	Α	В	С	D
Α	0	1	1	1
В	1	0	0	1
С	1	0	0	0
D	1	1	0	0

Adjacency List

- · Store a list of linked lists
 - Use map from vertex labels to lists
 - Space? Time to lookup edge? Time to iterate over incident edges?

Breadth-first Search

- · Equivalent to a level-order traversal of a tree
 - Search all nodes 1 away, 2 away, 3 away, etc
- Uses a queue data structure
- Basic algorithm:
 - Enqueue the start node
 - While the queue is not empty:
 - Dequeue a node
 - Check if node previously visited
 - If not, mark as visited and enqueue all children

Breadth-first Search

- If graph has multiple connected components
 - Wrap BFS inside a for-loop that iterates through all nodes
- See bfs_dfs_demo.cpp
 - Uses a typedef (allows you to rename a type)
 - Better to use map<string, vector<string>> instead of pair

Depth-first search

- Equivalent to a pre-order traversal of a tree
 - except may get stuck in cycles
- Use same algorithm as BFS but replace queue with stack/ recursion

