4/23/15

LECTURE 37: GRAPHS

]
Today

-Reading
- Bailey Chapter 16 (Graphs)

- Objectives
* [terators
« Graph algorithms




4/23/15

]
C++ Standard Template Library

« Contains familiar collections
- vector
- deque
e list
> map
* priority_queue
* pair

Iterators

- Iterator type depends on container and const-ness

« Map from name to mailing address:
unordered_map<string, string> address_book;
- Possible iterator declarations:

unordered_map<string, string>::iterator itr;
unordered_map<string, string>::const_iterator itr;




Iterators

- Operators on iterators
e itr++ and ++itr

« *itr returns reference to element being pointed to

« Operators on collection
* begin() — returns iterator to first element

- end() — returns iterator pointing just past last
element

Iterators
vector<int> vec;
// add some integers to vec

// itr is an iterator over vec
vector<int>::iterator itr = vec.begin();

// use itr in a for-loop to loop over vec
for(; itr != vec.end(); ++itr) {
cout << *itr << endl;

}

4/23/15



4/23/15

]
Graphs in Real Life :

+ Transportation networks y s Nap o
- Airline flight paths ) > =" A 4 7
- Roads, interstates, etc. (Google maps) NN : X X
- Finding shortest route, cheapest route Wb/ L & g = ot .°
- Find route that minimizes fuel costs J 7 ! ,. . NS

« Communication networks GaY AR s " i
- Electrical grid, phone networks, computer networks o\ B ,.

* Minimize cost for building infrastructure
= Minimize losses, route packets faster

]
More Graphs

- Social networks
- People and relationships (e.g. Facebook)
« Does this person know this person?

« Can this person introduce me to that
person (e.g. job opportunities)?

http://griffsgraphs.com/2012/07/02/a-facebook-network/




]
Definitions
- A graph is a generalization of a tree

« A graph G is a pair (V,E)
- Vis a finite, non-empty, set of vertices
- Eis the set of edges that connect pairs of vertices
- Called “vertices” or “nodes”

Example: Undirected Graph

*G =(V,E) where ° °

-V ={A, B, C, D}
-E={(A, C), (A,B), (A,D), (B,D)}

4/23/15



4/23/15

]
Example: Directed Graph

* G = (V,E) where
-V=A{1,2,3,4}
-E={(1,2), (2,1), (3,1), (4,3), (4,4), (3,2)}

Definitions

* path

* simple path

- path length

- cycle

- simple cycle




Definitions

- self loop

- incident

- adjacent
- degree
- simple graph

- acyclic graph

Connected Components

weakly connected

4/23/15



Adjacency Matrix

- Store a |V|-by-|V| boolean matrix
 Entry (i,j) is 1 if there is an edge from vertex i to vertex j
» Symmetric if undirected
-+ Space? Time to lookup edge? Time to iterate over incident edges?

OO0 |m|>

PR | |O|>
R O|O | |m
o|o|lOo(r|O
o |O | |+~ |O

Adjacency List

- Store a list of linked lists
+ Use map from vertex labels to lists
- Space? Time to lookup edge? Time to iterate over incident edges?

o

4/23/15



Breadth-first Search

- Equivalent to a level-order traversal of a tree
+ Search all nodes 1 away, 2 away, 3 away, etc

+ Uses a queue data structure ° e

- Basic algorithm:
- Enqueue the start node
« While the queue is not empty: e e
» Dequeue a node
» Check if node previously visited
« If not, mark as visited and enqueue all children

Breadth-first Search

- If graph has multiple connected components
» Wrap BFS inside a for-loop that iterates through all nodes

- See bfs_dfs_demo.cpp
+ Uses a typedef (allows you to rename a type)
- Better to use map<string, vector<string>>instead of pair

O 0 o0 ©
O  ©

4/23/15



4/23/15

Depth-first search

- Equivalent to a pre-order traversal of a tree
+ except may get stuck in cycles

+ Use same algorithm as BFS but replace queue with stack/
recursion

O 0 o 0

10



