4/19/15

LECTURE 35: EXCEPTIONS
AND ARRAYS

]
Today
*Reading

- Weiss Ch. 8.1-8.3, Ch. 10

*Objectives
- Exception handling in C++
*Arrays in C++

C++ Exceptions

« Use try-catch block like Java

+ In C++, you can throw a variable of any type

#include <iostream>
using namespace std;
type thrown and type caught

int main() { must match
try{
throw -1;
}
catch(int e) {
cout << “Exception occurred: “ << e << endl;
}

return 0;

C++ Exceptions

- Can have multiple catch statements
 Use “...” to catch an exception of any type

try{
// code here
}
catch(int e) {
cout << “Integer exception: “ << e << endl;
}
catch(char e) {
cout << “Char exception: “ << e << endl;
}
catch(...){
cout << “Default exception” << endl;
}

4/19/15

4/19/15

Throw Lists

* Indicate what exceptions are thrown by function using throw
lists

double sqgrt(int x) throw(int);
+ No list means throws anything (for backward compatibility)
« Empty list means throws nothing

 Throw lists are deprecated as of C++11 (but still supported)

C++ Exceptions

+ C++ standard library includes exception class from which
exception objects can be created

» The exception class includes the what function
 Returns a string description

- All exceptions thrown by C++ standard library are derived from
exceptions class

» See C++ documentation

c http://www.cplusplus.com/reference/exception/
exception/

4/19/15

]
Exceptions with File I/O

« Read this article:

http://gehrcke.de/2011/06/reading-files-in-c-using-ifstream-
dealing-correctly-with-badbit-failbit-eofbit-and-perror/

Arrays in C++

- Prefer vector over using a primitive array
- Prefer string over using an array of characters

- Still, it’s useful to understand primitive arrays in C++

4/19/15

Declaring an array

- Declare the type and size of the array
int arr[3]; // notice where the brackets go

» Compiler allocates enough memory
4 bytes per integer * 3 integers = 12 bytes allocated

- Use sizeof () function to get the size of a type in bytes

Behind the scenes

- The name of an array is a constant pointer to the
beginning of the allocated memory for that array

« The pointer arr is guaranteed to equal &arr[0]

int main() {
int SIZE = 3;
int arr[SIZE];
return 0;

4/19/15

Pointer Arithmetic

* You can perform addition on a pointer

« What is the value of ptr+1?
- If ptris an integer pointer, then adds 4 bytes to ptr
- If ptris a char pointer, then adds 1 byte to ptr

« Explains why arrays start with 0 instead of 1 in C-based
languages

Implications
- The following is illegal in C++. Why?

int arrayl[3];
int array2[3];

array2 = arrayl;

4/19/15

Implications

- Saying array2 == array1 tests memory equality

- What happens when we pass an array as an input
argument?

int main() { void function(int array[]) {
int arr([5];
my_function(arr);
return 0; }

Other differences

» There is no length instance variable
arr.length; // doesn’t work in C++

- Must keep track of the length of the array yourself

* No bounds checking in C++

« Accessing beyond bounds of the array may result in
segmentation fault...or may not

4/19/15

Dynamically allocated arrays

 Use the new|[] operator
- Just like the new operator but for arrays
- creates an array of objects on the heap
* There is a corresponding delete[] operator

void my_ function() {
int SIZE = 3;
int arrayl[SIZE]; // allocated on the stack
int *array2 = new int[SIZE]; // allocated on the heap
}

After my_function returns, what memory is freed and what is not?

Primitive strings
« An array of characters terminated with null terminator ‘\0’
+ Any characters after null terminator ignored by string functions

« Can pass as type (char *)

lhl lel III (II IOI I\OI

