4/12/15

LECTURE 32: More Memory
Management

]
Today

-Reading
*Weiss Ch. 3, 4

- Objectives
*Pointers in C++
- Call-by-value vs. call-by-reference
- (Back to classes: The Big Three)

Pointers in C++

A pointer is a variable that stores the memory address
of another entity of a given type

* To declare a pointer, use the * symbol

int *ptr; // Uninitialized!

Pointers in C++

- The address operator & returns the address of a
variable

- The dereference operator * maps from the pointer to
the data being pointed to

P -

4/12/15

Pointers in C++

* Be careful when altering memory via a
dereferenced pointer!

- Precedent rules are important
* *ptr++;
* (*vecPtr).push_back(5) // use ->instead

- Declaring multiple pointers on a line
«int *ptrl, *ptr2; // each pointer needs a *

Pointers in C++

What are the values of the following expressions?

int a = 5;
int *ptr = &aj;

ptr

*ptr

ptr == a
ptr == &a
&ptr

*a

*&a
**&ptr

STQHOQQUOO

4/12/15

4/12/15

Dynamically allocated memory

*The new keyword allocates memory from
the heap

*See ptr_exs.cpp

Dynamically allocated memory

- Don’t use new when a stack allocated variable will
suffice

- If you do use new, make sure you use delete

- If you have multiple pointers to the same piece of
memory

- Beware of stale pointers (point to already freed memory)

- Beware of double deleting (deleting same memory twice)

Pointers in C++

int x, y;

x = 10;

int *p, *q;

p = new int(3);

*p = 47;
q = p;

*q = 23;
delete p;
*q = 17;
p = NULL;
p = &X;

cout << *p << endl;

Pointers in C++

int x, y; // declare two ints

x = 10; // stack allocated int equals 10
int *p, *q; // p, 4 pointers to ints

p = new int(3); // p points to value 3

*p = 47; // p now points to 47

q = p; // q points to value 47

*q = 23; // both p,q point to 23

delete p; // memory is recycled

*q = 17; // ERROR! memory was recycled

p = NULL; // p points to nowhere

P = &x; // p holds address of x - points to x

cout << *p << endl; // prints value of x

4/12/15

Call-by-value

- Java and C++ use call-by-value when passing
parameters

- Call-by-value: the input arguments are copied
into the formal parameters

Call-by-value

int main(
int x

)

{
5;
7;

swap (X, Y}
—

§

input arguments

formal parameters

/ \

void swap(int m, int n){
int temp = m;
m = n;
n temp;

x and y aren’t swapped and lots of time spent
copying actual objects

4/12/15

4/12/15

]
Call-by-value

» Change the formal parameters to now be pointers

int main() {

int x = 5; void swap(int *m, int *n){
int y = 7; int temp = *m;
*m = *n;
swap (&x,&Y); *n = temp;
}

x and y are now swapped but requires changing syntax!

References in C++

A reference is a constant pointer that is automatically
dereferenced

*See ptr_exs.cpp

- To declare a reference, use & symbol
intx=5;
int &int_ref =x;

4/12/15

]
Call-by-reference

« C++ also allows call-by-reference

int main() { e
int x = 5; void swap(int(&m, int @{
int y = 7; int temp = m;
m = n;
swap(x,y):; n = temp;
}
}

The best solution!

Binary Search Example

int binarySearch(int val,vector<int> arr,int lo, int hi) {

if(lo > hi) { return -1; }

int mid = (lo+hi)/2;

if(arr[mid] == val) {
return mid;

}

else if(val < arr[mid]) {
returnbinarySearch(val, arr, lo, mid-1);

}
else {

return binarySearch(val, arr, mid, hi);
}

This is inefficient. Why?

Binary Search Example

new function prototype

e

int binarySearch(int val, const vector<int>& arr,int lo, int hi);

« The & operator means no copying of input arguments

- const means this function will not change (mutate) this
input parameter

» Only const methods can be called on arr

References in C++

- Benefits
- Get the low-memory overhead of using a pointer
« Without the need to use the dereference operator

4/12/15

4/12/15

]
The Big Three

- Destructor, copy constructor, operator=

- Default implementations of these methods are
provided

* Rule-of-thumb: If you need to overwrite one of
these, overwrite them all

Destructor

- Called when the object goes out of scope or
when delete is called on an object

- Releases all resources
- memory, files, streams

10

Copy Constructor

- Constructs a new object from an existing object
 The copy constructor is called when,
IntCell copy = original;
IntCell copy(original);

an input parameter to a call-by-value
function

an object returned by value
« It would not be called in this instance:
IntCell copy;

copy = original;

operator=

- Assignment for two already constructed objects
- Example usage,

IntCell first(3);
IntCell scnd;

scnd = first;

4/12/15

11

