LECTURE 31: POINTERS

Today
*Reading
- Weiss Chapter 3, 4
. ; The C++ textbook is now
: Objec‘uves on reserve at Honnold
« Compiling Mudd library

« Initializer lists
* Pointers!

4/9/15

4/9/15

Compiling and Running C++

* Modifies the orignal

. program according to
Preprocessing the directives that start
with '#.

o « Translates the program into a
Compilation object file containing
machine language code

* Handles merging
Linking failnd make executable
.

http://www.lifengadget.com/lifengadget/compiling-linking-cplusplus/

Compiling and Running C++

* To run the entire pipeline:

g++ -Wall -o executable file first src.cpp
second src.cpp

» Use the —Wall flag to see all warnings

Initializer Lists

* Use in class constructor

- Comma-separated list of fields and initial values
- Don’t forget the colon

* More efficient

- Initializes variables once rather than running default
constructor and then updating

Back to Memory Management

- Java
« Everything is an object, i.e. allocated from heap
« Variables are reference variables
+ Garbage collector

o C++
- Everything is a primitive, i.e. allocated from stack
- Stack variables automatically de-allocated when scope exits
- Allocate from heap using new keyword
- You are the garbage collector!

4/9/15

4/9/15

Back to Memory Management

*Implications
- Assignment (=) means copying
« But now you have to think about what you're
copying
« Assignments happen more than you realize!

Pointers in C++

A pointer is a variable that stores the memory address
of another entity of a given type

- To declare a pointer, use the * operator

int *ptr; // Uninitialized!

Pointers in C++: address operator

- The address operator & returns the address of a
variable

int x =5, y = 7;
ptr = &X;

string str = “hello”;
string *str_ ptr = &str;

Pointers in C++: dereference operator

- The dereference operator * goes from the pointer to
the data being pointed to

int x = 5;

int y = 7;

int *ptr = &x;

cout << *ptr << endl;

*ptr = 10;

4/9/15

Pointers in C++

« Do not dereference an uninitialized pointer!

- Always initialize pointers (to 0, NULL, or a known
address)

- Precedent rules are important
« *ptr++ will increment first then dereference

- Declaring multiple pointers on a line
«int *ptrl, *ptr2; // each pointer needs a *

Pointers in C++

What are the values of the following?

int a = 5;
int *ptr = &aj;

ptr

*ptr

ptr == a
ptr == &a
&ptr

*a

*&a
**&ptr

STQHOQQUOO

4/9/15

