4/5/15

LECTURE 29: C++

]
Today

-Reading
* (Weiss Chapter 0 — interesting history)
* Weiss Chapter 1, 2

* Objectives
« History of C, C++, Java
- Similarities/Differences
¢ First C++ program

Extremely simplified history!

- C was developed in early 70’s
- Designed for systems programming
* Provides low-level access to memory
 Extremely popular still today
* Fast

« C++ developed in late 70’s by Bjarne Stroustrup
+ C with object oriented support
 Backwards compatible with C
- Still fast and still widely used today
- Java developed by Sun Microsystems in 90s
+ Uses C/C++ syntax
- Explicitly disallows “bad programming”
- Java bytecode runs on virtual machine

Different Goals

« C++

« Correct programs run as fast as possible

*Java

* Incorrect programs not allowed to run

Which language is better depends on the
application!

4/5/15

Similarities between C++ and Java

- Primitive types: int, float, double, bool, char, void
+ C++ can also be signed (possibly negative) or unsigned (always positive)
+ C++ can also be long (more bytes) or short (fewer bytes)

* Syntax
« Curly brackets
« Function syntax: return type, name, input parameters
- for loops, while loops, if statements, if-else, switch statements

“n

« The “.” operator to call a function on an object

» C++ has a standard template library with many of same data
structures available as Java

High-Level Differences

* Compiles to bytecode which * Compiles to native code

is interpreted by JVM specific to the architecture of
the machine
* Enforces safety Safety left to programmer
* Garbage collector * Possible to have a pointer to
an object already returned to
the system!
= Portable but slower = Not portable but faster

4/5/15

Other differences
« C++ doesn’t require classes In Java, can get same
- Can be used as a procedural language behavior with static
keyword

+ All execution begins with main method

- The preprocessor: #include statements
« Equivalent to copying and pasting file
 The # symbol is a preprocessor directive, i.e. resolved before compile
time
- #include <file> for built-in system files
- #include “file.h” for user defined files

Other differences

« Must declare all variables and functions before you use them.
« Historically C++ compiler process source code from top to bottom
« When function is called, compiler looks for functions it’s already seen

- Possible options
- Define all functions before you invoke them
+ Place function prototype at top of file

- Create a .h (header) file to contain function prototypes and use
#include to include header file

4/5/15

4/5/15

Other differences

- Namespaces are a generalization of packages
+ Named region of code contained in curly brackets
- Helps disambiguate between variables and functions with same name

- The std namespace
- Always have to specify

+ In C++, the vector type is in the std namespace the “using” keyword is
similar to import

* Touse std statement in Java

- Write using std namespace; at top of file
» Use :: operator, e.g. std: :vector orstd::cout

Operator Overloading

- Define a meaning for existing operations (e.g. + or []) for
new class types

nums[i] //numsisa vector (i.e. an ArrayList in Java)

- Overloaded the [] operator so it acts like the “at” method
 The “at” method is bounds checked and throws an exception
 The operator[] method is not bounds checked

» See C++ documentation for vector

- Makes classes look like primitives

4/5/15

The biggest difference: memory management

- In Java, most types are objects
+ Except for local primitives such as int, double, boolean, etc

¢ In C++, everything is a primitive
+ Allocated on the stack not the heap
- To allocate from heap, explicitly use new keyword

- Changes the semantics of assignment
+ Assignment now means copying!
« Assignments happen all the time (more than you’re aware of)

