Lecture 18:
Heaps & Heapsort

Exam Next Monday

¢ In class: 50 minutes
e Covers everything through Splay trees

e Studying essential

CS 62 B ¢
Spring 2013 orm study groups
Kim Bruce & Kevin Coogan ¢ Do problems from sample exams (on web page)
¢ Do problems from text
® No Quiz Friday
Exam Topics Next Project: Darwin

e Jterators

¢ Pre and post-conditions
e Linked Lists

¢ ArrayLists

¢ Stacks
¢ Java Graphics/GUI
* Queues
¢ Analysis of Algorithms:
Big-O e Trees

* Binary Search Trees/

¢ Induction/Sorting
Splay trees

® Learn JUnit in lab

* Darwin: Program creatures w/zombie-like
behavior!
e Final version due in 1 1/2 weeks

e Part 1 due Friday.

¢ Contest

Array Representation

e datalo..n-1] can hold values in trees
e left subtree of node i in 2*i+1, right in 2*i+2,

e parent in (-1)/2

Indices: 0 1 2 3 456 7 8 9 10 11 12 13 14
datal UORCMES --- P T - - -

Min-Heap

* Min-Heap H is complete binary tree s.t.
e H is empty, or
¢ Both of the following hold:

e The value in root position is smallest value in H

o The left and right subtrees of H are also heaps.
Equivalent to saying parent < both left and right children

e Excellent implementation for priority queue

¢ Dequeue elements w/lowest priority values before higher

PriorityQueue Implementations

blic interf Priorit E extends C ble<E . .
p{)u ic interface PriorityQueue<E extends Comparable<E>> e As regular queue (array or linked) where either

keep in order or search for lowest to remove:

/x*) ¢ One of add or remove will be O(n)
* @re !isEmpty(Q)
* @return The minimum value in the queue. * Heap representation (in arraylist) is more
* .
/- efficient: O(log n) for both add and remove.
public E remove();
public E getFirst(); * Insert into heap:
public void add(E value); e Place in next free position,
public boolean isEmpty(); o “Percolate” it up.
publ?c in’F sizeQ); e Delete:
public void clear(Q);
} ® remove root,

¢ move smallest child up to fill gaps, repeat

Insert 15:

IndexRange: 0 1 2 3 4 5 6 7 8 9 10
data: 10 20 14 31 40 45 60 32 33 47

See VectorHeap code
IndexRange: 0 1 2 3 4 5 6 7 8 9 10

data: 10 20 14 31 40 45 60 32 33 47 15

IndexRange: 0 1 2 3 4 5 6 7 8 9 10
data: 10 20 14 31 15 45 60 32 33 47 40

IndexRange: 0 1 2 3 4 5 6 7 8 9 10
data: 10 15 14 31 20 45 60 32 33 47 40

Tree Sort

* Build Binary search tree (later)

* Do Inorder traversal, adding elts to array
e Inorder traversal: O(n)

Sorting with Trees

¢ Building tree:
e logi+log2+..+logn=0(nlogn) in best (& average) case

o O(n? in worst case
* O(n log n) in best & average case
¢ O(n? in worst case :~(What is worst case?

* Heapsort is always better!

Heapsort

* Make vector into a heap:
¢ n add operations = O(n log n)
* Remove elements in order
* n remove operations = O(n log n)

e Total: O(n log n)

e If clever can make into heap in O(n)

e ... but still O(n log n) total.

Comparing Sorts

e Quicksort: fastest on average O(n log n), but
worst case is O(n? & takes O(log n) extra space

e Heapsort: O(n log n) in average & worst case.
No extra space.
e Bit slower on average than quick & mergesorts.

* Mergesort: O(n log n) in average and worst
case. O(n) extra space.

¢ Performs well on external files where not all fit in
memory.

Binary Search Trees

BST

A binary tree is a binary search tree iff
e it is empty or

e if the value of every node is both greater than or equal to
every value in its left subtree and less than or equal to
every value in its right subtree.

Implementation

¢ Focus on trickiest methods:
¢ add, get, & remove

e protected methods: locate, predecessor, and removeTop

/Il @pre root and value are non-null
/| @post returned: 1 - existing tree node with the desired value, or
/ 2 - the node to which value should be added
protected BinaryTree<E> locate(BinaryTree<E> root, E value) {
E rootValue = root.value();
BinaryTree<E> child;
if (rootValue.equals(value)) return root; // found at root
// look left if less-than, right if greater-than
if (ordering.compare(rootValue,value) < 0) {
child = root.right(Q);
} else {
child = root.left();
}
// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty()) {
return root;
} else {
return locate(child, value);

3

