
Graphic Silver Dollar Game
Due Monday, January 30, 2012

Assignment 1
CSC 062: Spring, 2012

The Problem

Our first assignment is a review of Java, an exercise in building classes, and an illustration of the
ArrayList class. You will create a graphical version of Bailey’s Silver Dollar Game.

1. Read through the CS 062 style guide linked on the course web page under Documentation and Hand-
outs. You will need to follow these guidelines for all of your assignments.

2. Begin by creating a new Java project in Eclipse named Assignment1. (Remember to add the BAILEY

variable.) If you’ve forgotten how to do this, see the instructions on the Documentation page for the
course.

If you ever need to add a library variable (i.e. BAILEY) to an existing project, for exmple, if you
click finish too quickly :), right-click on a project (on a Mac, that’s ctrl+click) and select Build

Path/Configure Build Path.... Select the Libraries tab and then click Add Variable...

As in Lab 1, to get started, copy the files over into the src directory of your newly created project.
There are three files Coin.java, CoinSquare.java and GraphicsCoinStrip.java all of which can be
found at /common/cs/cs062/assignments/assignment1/.

Once you’ve copied them, refresh your project in eclipse. The classes Coin.java and CoinSquare.java

are complete; you will not have to change them, but take a look at them to see what methods are
available.

3. In the file GraphicsCoinStrip.java, you must fill in the constructor and add appropriate methods
where necessary to play the game. Follow the pattern from TextCoinStrip in our first laboratory
session. Notice that there are no play or move methods, because the mouse is in control of the game.

Much of what drives the game is the mouse event handling, which can be found in CoinMouseListener

in the middle of GraphicsCoinStrip.java. I have given you some of the code that should be there
as well as some comments suggesting what you need to add. The contains methods that Coin and
CoinSquare inherit from Elipse2D and Rectangle2D may be helpful.

As much as possible, try and develop incrementally. Get one small piece working and then move on to
another chunk.

4. After you have a working copy of the game, write a method that checks to see if the game has completed
and signal this to the user in some fashion. Possible examples are to print out a message to the console,
or better, change the color of all of the coins. It is not required, but you can also make sure that the
coins no longer move once the game has completed.

Commenting

As always, you should comment your code. In addition, we will be using Javadoc commenting style. You
must have the following to be compliant with Javadoc:

• A description of the class at the beginning

• @author after the class description

• @version with the date after the author tag

• A description of each method before the method

• @param, @return and @throws tags for each method (where appropriate)

1

• Appropriate Javadoc ”style” as we discussed in class (that is they should start with /**, have a *
before each line and be indented appropriately)

Please include pre and postconditions in the headers of methods as appropriate.

Grading

You will be graded based on the following criteria:

criterion points
game starts with random coin positions 1
coins can be dragged 2
dropped coins end up centered in correct location 1
illegal moves are not allowed 3
game over is indicated correctly 2
general correctness 2
appropriate comments (including JavaDoc) 2
style and formatting 2
submitted correctly 1

NOTE: Code that does not compile will not be accepted! Make sure that your code compiles before
submitting it.

Submitting Your Work

• From within Eclipse, select “Export” from the “File menu.

• Click on the triangle next to “General” in the dialog box. Select “File system” and click next.

• Make sure all the files in the dialog on the right hand side are checked, and then click the “Browse”
button next to the “To directory:” entry

• Select “Desktop” from the pulldown menu and click on “Choose”.

• This should create a new folder on the desktop. You should now rename that folder by clicking on it
and pressing return, and typing in a more descriptive title that identifies you and the assignment you
are working on, such as “Bruce-Assignment1.” (except replace “Bruce” by your last name!). Note that
dashes in names are OK, but don’t include spaces or periods.

You must identify that the submission is for an Assignment, so that we can distinguish
your lab submission from your assignment submission.

• Quit Eclipse.

• Now open the “cs062” folder icon on the desktop by double-clicking on it. Within the “cs062” folder
you should see a “dropbox” folder.

• Drag the folder you just created into the dropbox folder. When you do this, the computer may warn
you that you will not be able to look at this folder. That is fine. Just click “OK”.

• You can now drag the folder on your desktop into the trash. Do save the original folder in your
workspace in case you need to access your program again. (So only the folder you “exported” should
be thrown away.)

If you submit your program and later discover that your submission was flawed, you can submit again.
We will grade the latest submission made before the 11:59 p.m. deadline. The computer may not let you
submit again unless you change the name of your folder slightly. It does this to prevent another student
from accidentally overwriting one of your submissions. Just add something to the folder name (like the word
“revised”) and the re-submission will work fine.

2

