
Lecture 18:
Concurrency

CS 62
Spring 2011

Kim Bruce & David Kauchak

Slides based on those !om Dan Grossman, U. of
Washington

Why Concurrency?

• Not about speed, but
• Code structure for responsiveness

• Example: Respond to GUI events in one thread while another
thread is performing an expensive computation

• Processor utilization (mask I/O latency)
• If 1 thread “goes to disk,” have something else to do

• Failure isolation
• Convenient structure if want to interleave multiple tasks and don’t

want an exception in one to stop the other

Best Code
public class Account {
 ...
$ // return balance
$ synchronized public int getBalance() {
$ $ return balance;
$ }

$ // update balance by adding amount
$ synchronized public void changeBalance(int amount) {
$ $ int newBalance = balance + amount;
$ $ display.setText("" + newBalance);
$ $ balance = newBalance;
$ }
}

Reentrant Locks

• If thread holds lock when executing code, then
further method calls within block don’t need to
reacquire same lock.
• E.g., Methods m and n are both synchronized with same

lock (e.g., with this), and execution of m results in calling
n. Then once thread has the lock executing m, no delay
in calling n.

Concurrency for
Responsiveness

Maze Program

• Uses stack to solve a maze.

• When user clicks “solve maze” button, spawns
Thread to solve maze.

• What happens if send “run” instead of “start”?

Non-Event-Driven
Programming

• Program in control.

• Program can ask for input at any point, with
program control depending on input.

• But user can’t interrupt program
• Only give input when program ready

Event-Driven Programming

• Control inverted.
• User takes action, program responds

• GUI components (buttons, mouse, etc.) have
“listeners” associated with them that are to be
notified when component generates an event.

• Listeners then take action to respond to event.

Event-Driven Programming
in Java

• When an event occurs, it is posted to
appropriate event queue.
• Java GUI components share an event queue.

• Any thread can post to the queue

• Only the “event thread” can remove event from the
queue.

• When event removed from queue, thread
executes the appropriate method of listener w/
event as parameter.

Example: Maze-Solver

• Start button ! StartListener object

• Clear button ! ClearAndChooseListener

• Maze choice ! ClearAndChooseListener

• Speed slider ! SpeedListener

Listeners

• Different kinds of GUI items require different
kinds of listeners:
• Button -- ActionListener

• Mouse -- MouseListener, MouseMotionListener

• Slider -- ChangeListener

• See GUI cheatsheet on documentation web
page

Event Thread

• Removes events from queue

• Executes appropriate methods in listeners

• Also handles repaint events

• Must remain responsive!
• Code must complete and return quickly

• If not, then spawn new thread!

Why did Maze Freeze?

• Solver animation was being run by event thread

• Because didn’t return until solved, was not
available to remove events from queue.
• Could not respond to GUI controls

• Could not paint screen

Off to the Races

• A race condition occurs when the computation
result depends on scheduling (how threads are
interleaved). Answer depends on shared state.

• Bugs that exist only due to concurrency
• No interleaved scheduling with 1 thread

• Typically, problem is some intermediate state
that “messes up” a concurrent thread that
“sees” that state

Example
class Stack<E> {
 …
 synchronized void push(E val) { … }
 synchronized E pop() {
$ if(isEmpty())
 throw new StackEmptyException();
 $ …
 }

 E peek() {
 E ans = pop();
 push(ans);
 return ans;
 }
}

Sequentially Fine

• Correct in sequential world

• May need to write this way, if only have access
to push, pop, & isEmpty methods.

• peek() has no overall effect on data structure
• reads rather than writes

Concurrently Flawed

• Way it’s implemented creates an inconsistent
intermediate state
• Even though calls to push and pop are synchronized so

no data races on the underlying array/list/whatever

• (A data race is simultaneous (unsynchronized) read/write
or write/write of the same memory: more on this soon)

• This intermediate state should not be exposed
• Leads to several wrong interleavings…

Lose Invariants

• Want: If there is at least one push and no pops,
then isEmpty always returns false.

• Fails with two threads if one is doing a peek,
other isEmpty, & unlucky.

• Gets worse: Can lose LIFO property
• Problem do push while doing peek.

• Want: If # pushes > # pops then peek never
throws an exception.
• Can fail if two threads do simultaneous peeks

Solution

• Make peek synchronized (w/same lock)
• No problem with internal calls to push and pop because

locks reentrant

• Just because all changes to state done within
synchronized pushes and pops doesn’t prevent
exposing intermediate state.

A Fix!

• Re-entrant locks allows calls to push and pop if
use same lock

class C {
 <E> E myPeek(Stack<E> s){
 synchronized (s) {
 E ans = s.pop();
 s.push(ans);
 return ans;
 }
 }
}

class Stack<E> {
 …
 synchronized E peek(){
 E ans = pop();
 push(ans);
 return ans;
 }
}

From within Stack From outside Stack

Beware of Accessing
Changing Data

• Even if unsynchronized methods don’t change
it.

class Stack<E> {
 private E[] array = (E[])new Object[SIZE];
 int index = -1;
 boolean isEmpty() { // unsynchronized: wrong?!
 return index==-1;
 }
 synchronized void push(E val) {
 array[++index] = val;
 }
 synchronized E pop() {
 return array[index--];
 }
 E peek() { // unsynchronized: wrong!
 return array[index];
 }
}

Providing Safe Access
• For every memory location (e.g., object field) in

your program, you must obey at least one of
the following:
• Thread-local: Don’t use the location in > 1 thread

• Immutable: Don’t write to the memory location

• Synchronized: Use synchronization to control access to
the location

all memory thread-local
memory immutable

memory

need
synchronization

Conventional Wisdom

Thread-Local
• Whenever possible, don’t share resources

• Easier to have each thread have its own thread-local
copy of a resource than to have one with shared updates

• This is correct only if threads don’t need to
communicate through the resource
• That is, multiple copies are a correct approach

• Example: Random objects

• Note: Since each call-stack is thread-local, never need to
synchronize on local variables

• In typical concurrent programs, the vast majority of
objects should be thread-local: shared-memory should
be rare – minimize it

Immutable
• Whenever possible, don’t update objects

• Make new objects instead

• One of key tenets of functional programming
• Hopefully you study this in 52

• Generally helpful to avoid side-effects

• Much more helpful in a concurrent setting

• If a location is only read, never written, no
synchronization is necessary!
• Simultaneous reads are not races and not a problem

• Programmers over-use mutation – minimize it

Dealing with the Rest

• Guideline #0: No data races
• Never allow two threads to read/write or write/write the

same location at the same time

• Necessary: In Java or C, a program with a data
race is almost always wrong

Worse Than You Think!

• Assertion always true w/
single threaded.

• Looks always true for
multithreaded.
• OK if f not called at all

• OK after f completes

• Looks OK if in middle of f

• But have race condition

class C {
 private int x = 0;
 private int y = 0;

 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

Memory Reordering
• For performance reasons, compiler and hardware

reorder memory operations.

• But, but, ...
• Compiler/hardware will never perform a memory reordering

that affects the result of a single-threaded program

• The compiler/hardware will never perform a memory
reordering that affects the result of a data-race-free multi-
threaded program

• So: If no interleaving of your program has a data
race, then can forget about reordering nonsense:
result will be equivalent to some interleaving

A Second Fix

• If label field volatile, accesses don’t count as
data races

• Implementation forces memory consistency
• though slower!

• Should have used this in CS 51 w/shared
variables.

• Really for experts -- better to use locks.

