Lecture 14: Concurrency

CS 62
Spring 2011
Kim Bruce & David Kauchak

Some slides based on those from Dan Grossman,
U. of Washington.

Parallelism & Concurrency

Hard to find single-processor computers

e Want to use separate processors to speed up computing
by using them in parallel.

e Also have programs on single processor running in
multiple threads. Want to control them so that program
is responsive to user: Concurrency

 Often need concurrent access to data structures (e.g.,
event queue). Need to ensure don’t interfere w/each
other.

History

* Writing correct and efficient multithread code
is more difficult than for single-threaded
(sequential).

¢ From roughly 1980-2005, desktop computers
got exponentially faster at running sequential
programs

e About twice as fast every 18 months to 2 years

More History

¢ Nobody knows how to continue this
* Increasing clock rate generates too much heat
* Relative cost of memory access is too high

¢ Can keep making “wires exponentially
smaller” (Moore’s “Law”), so put multiple
processors on the same chip (“multicore”)

¢ Now double number of cores every 2 years!

What can you do with
multiple cores?

¢ Run multiple totally different programs at the
same time

e Already do that? Yes, but with time-slicing

¢ Do multiple things at once in one program
¢ Our focus — more difficult

¢ Requires rethinking everything from asymptotic
complexity to how to implement data-structure
operations

Parallelism vs. Concurrency

¢ Parallelism:

¢ Use more resources for a faster answer

¢ Concurrency

¢ Correctly and efficiently allow simultaneous access

e Connection:
e Many programmers use threads for both

e If parallel computations need access to shared resources,
then something needs to manage the concurrency

Analogy

e CSr idea:

e Writing a program is like writing a recipe for one cook
who does one thing at a time!
e Parallelism:
¢ Hire helpers, hand out potatoes and knives
¢ But not too many chefs or you spend all your time
coordinating
¢ Concurrency:

¢ Lots of cooks making different things, but only 4 stove
burners

e Want to allow simultaneous access to all 4 burners, but
not cause spills or incorrect burner settings

Models Change

® Model: Shared memory w/explicit threads

* Program on single processor:
* One call stack (w/ each stack frame holding local variables)
* One program counter (current statement executing)
e Static fields

¢ Objects (created by new) in the heap (nothing to do with
heap data structure)

Multiple Theads/Processors

* New story:

¢ A set of threads, each with its own call stack & program
counter

* No access to another thread’s local variables
e Threads can (implicitly) share static fields / objects

¢ To communicate, write somewhere another thread reads

Shared Memory

Threads, each with own.
unshared call stack and current.

statement (pc for 7” ogrant. Heap for all objects and
counter”) local variables are static fields
numbers/mull or beap references

Other Models

* Message-passing:

¢ Each thread has its own collection of objects.
Communication is via explicit messages; language has
primitives for sending and receiving them.

¢ Cooks working in separate kitchens, with telephones

e Dataflow:

* Programmers write programs in terms of a DAG and a
node executes after all of its predecessors in the graph

¢ Cooks wait to be handed results of previous steps

¢ Data parallelism:

¢ Have primitives for things like “apply function to every
element of an array in parallel”

Parallel Programming in Java

* Creating a thread:
1. Define a class C extending Thread
* Override public void run() method
2. Create object of class C
3. Call that thread’s start method

¢ Creates new thread and starts executing run method.

¢ Direct call of run won’t work, as just be a normal method call

® Alternatively, define class implementing Runnable, create
thread w/it as parameter, and send start message

Parallelism Idea

e Example: Sum elements of an array
e Use 4 threads, which each sum 1/4 of the array
[EENERRNERRNNERRNRRNN NN RN NERNNNRRNRRNANRNE]
+: anse +: ans; +: ans, +: ans;

—_ =

+:ans

e Steps:
e Create 4 thread objects, assigning each their portion of
the work
e Call start(on each thread object to actually run it
e Wait for threads to finish

e Add together their 4 answers for the final result

Parallelism Idea

ans0 ansl ans2 ans3

T

ans

¢ Example: Sum elements of an array

e Use 4 threads, which each sum 1/4 of the array

e Steps:

e Create 4 thread objects, assigning each their portion of
the work

e Call start0 on each thread object to actually run it
e Wait for threads to finish

¢ Add together their 4 answers for the final result

First Attempt

class SumThread extends Thread {
int lo, int hi, int[] arr;//fields to know what to do
int ans = 0; // for communicating result
SumThread(int[] a, int 1, int h) { .. }
public void run(){ .. }

}

s
int sum(int[] arr){ \V?hzt:zwrong?
int len = arr.length;
int ans = 0;

SumThread[] ts = new SumThread[4];

for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1l)*len/4);
ts[i].start(); // use start not run

}

for(int i=0; i < 4; i++) // combine results
ans += ts[i].ans;
return ans;

Correct Version

class SumThread extends Thread {
int lo, int hi, int[] arr;//fields to know what to do
int ans = 0; // for communicating result
SumThread(int[] a, int 1, int h) { .. }
public void run(){ .. }

}

int sum(int[] arr)({
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+l)*len/4);
ts[i].start(); // start not run

}

for(int i=0; i < 4; i++) // combine results
ts[i].join(); // wait for helper to finish!

ans += ts[i].ans;
return ans;

Thread Class Methods

e void start(), which calls void run()
¢ void join() - blocks until receiver thread done

e Style called fork/join parallelism

e Code gets error message as join can throw exception
InterruptedException

¢ Some memory sharing; lo, hi, arr, ans fields

e Later learn how to protect using locks.

Actually not so great.

e If do timing, it’s slower than sequential!!

e Want code to be reusable and efficient as core
count grows.

¢ At minimum, make #threads a parameter.

e Want to effectively use processors available
now
¢ Not being used by other programs

¢ Can change while your threads running

