Lecture 23: Parallelism

CS 62
Fall 2015
Kim Bruce & Michael Bannister

Some slides based on those from Dan Grossman,

U. of Washington

INEFFECTIVE SORTS

DEFINE. HALPHEARTEDMERGESORT (LisT): DEFINE FRSTBOGOSORT(LIST):
IF LENGTH(LIST) < 2: // AN OPTMIZED BOGOSORT
RETORN LIST /I RONS IN O(N LoGN)
PIVOT = INT (LENGTH(LIST) / 2) FOR N FROM 1. TO LOG(LENGTH(LIST)):
A= mfﬂwmmesokr(usr[:mmﬂ; SHUFFLE(LIST):
B = HALFHEARTEDMERGE SORT (LT [PvOT:] IF 1550RTED (LIST):
// oMMMMM RERN LiST
RETURN[A, B] // HERE. SORRY. RETURN “KERNEL PRGE FRULT (ERROR (ODE: 2)"
DEFNE JOBINTERVEW QUICKSORT (LisT): DEFINE PANICSORT(LST):
OK 50 YOU CHOOSE. A PVET IF ISSORTED (LIST):
THEN DIVDE THE LIST IN HALF REURN LIST
FOR EACH HALF: FOR N FROM 1 To 10000:
(HECK T SEE IF ITS SORED PIVOT = RANDOM(0, LENGTH(LIST))
NO, WAIT, ITDOESN'T MATTER LsT = UsT [Pvor: 1+ LIsT : PvoT]
COMPARE EACH ELEVIENT To THE PNOT IF 1550RTED(UST):
THE BGGER ONES GO IN ANBJ LIST RETURN LST
THE EQUAL ONES GO INTS, UH IF ISSORTED(LST):
THE SECOND LIST FROM BEFORE RETURN UST:
HANG ON, LET ME NAME THE USTS IF 1SS0RTED(UIST): //THIS CAN'T BE HAPPENING
THIS 15 UST A RETURN LIST
THE NEW ONE 15 LIST B IF 1SSORTED (LIST): // COME ON COME ON
PUT THE BIG ONES INT> LIST B RETRN UST
NOW TAKE THE SECOND LIST // OH JEEZ
CALL IT LiST; UH, A2 // TV GONNA BE IN 50 MUCH TROUBLE
WHICH ONE WRS THE PIVOT IN? ust=L]
SCRATCH AL THAT SYSTEM(“SHUTDOWN -H +5™)
IT'JUST RECURSIVELY CAUS TSELF SYSTEM (“RM -RF /")
UNTIL BOTH LIST5 ARE EMPTY SYSTEM (“RM -RF ~/+")
RIGHT? SYSTEM("RM -RF /™)
NOT EMPTY, BUT YU KNOW WHAT T MEAN SYSTEM('RD /5 /Q C:*#*) //PORTABIITY
AM T ALLOWED B USE THE STANDARD LIBRARIES? RETORN [1,2, 3,4,5]

Parallel Programming in Java

e Creating a thread:
1. Define a class C extending Thread
¢ Opverride public void run() method
2. Create object of class C

3. Call that thread’s start method
* Creates new thread and starts executing run method.

* Direct call of run won’t work, as just be a normal method call

* Alternatively, define class implementing Runnable, create
thread w/it as parameter, and send start message

Allows class to extend a different one.

Parallelism Idea

J] T T
ans0 ansl ans2 ans3

— T,

+
ans

e Example: Sum elements of an array

* Use 4 threads, which each sum 1/4 of the array

e Steps:

* Create 4 thread objects, assigning each their portion of
the work

e Call start() on each thread object to actually run it
* Wait for threads to finish

¢ Add together their 4 answers for the final result

First Attempt

class SumThread extends Thread {
int lo, int hi, int[] arr;//fields to know what to do
int ans = 0; // for communicating result
SumThread(int[] a, int 1, int h) { .. }
public void run(){ .. }
}
)
_ _ What'’s wrong?
int sum(int[] arr)({
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+l)*len/4);
ts[i].start(); // use start not run
}
for(int i=0; i < 4; i++) // combine results
ans += ts[i].ans;
return ans;

Correct Version

class SumThread extends Thread {
int lo, int hi, int[] arr;//fields to know what to do
int ans = 0; // for communicating result
SumThread(int[] a, int 1, int h) { .. }
public void run(){ .. }

}

int sum(int[] arr){

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+l)*len/4);
ts[i].start(); // start not run

}

for(int i=0; i < 4; i++) // combine results
ts[i].join(); // wait for helper to finish!
ans += ts[i].ans;

return ans;

} } See program ParallelSum
Thread Class Methods Actually not so great.
e void start(), which calls void run() e If do timing, it’s slower than sequential!!

¢ void join() -- blocks until receiver thread done

Style called fork/join parallelism

* Need try-catch around join as it can throw exception
InterruptedException

e Some memory sharing: lo, hi, arr, ans fields

Later learn how to protect using synchronized.

* Want code to be reusable and efficient as core
count grows.

e At minimum, make #threads a parameter.

* Want to effectively use processors available
now

¢ Not being used by other programs

¢ Can change while your threads running

Problem

* Suppose 4 processors on computer

* Suppose have problem of size n

e can solve w/3 processors each taking time t on n/3 elts.

* Suppose linear in size of problem.

e Try to use 4 threads, but one processor busy playing
music.

e First 3 threads run, but 4th waits.
o First 3 threads scheduled & take time ((n/4)/(n/3))*t = 3/4 t
o After 1st 3 finish, run 4th & takes another 3/4 t
o Total time 1.5 * t, runs 50% slower than with 3 threads!!!

Other Possible Problems

e On some problems, different threads may take
significantly different times to complete

e Imagine applying f to all members of an array,
where f applied to some elts takes a long time

e If unlucky, all the slow elts may get assigned to
same thread.

e Certainly won't see n time speedup w/ n threads.

* May be much worse! Load imbalance problem!

Other Possible Problems

* May not have as many processors available as
threads

* On some problems, different threads may take
significantly different times to complete

Toward a Solution

* To avoid having to wait too long for any one
thread, instead create lots of threads

* Schedule threads as processors become
available.

e If 1 thread very slow, many others will get
scheduled on other processors while that one
runs.

e Will work well if slow thread scheduled
relatively early.

Naive Algorithm Not Work

e Suppose divide up work into threads which
each handle 100 elts.

e Then will be n/to0 threads.

e Adding them up linear in size of array

e If each thread handles only 1 sum then back to
sequential algorithm.

Divide & Conquer

T T T T T T T T T T T LT T T
PP
S~

WO N N N

~ ~ ~
T~ ~,
_ .

e Divide in half, w/ one thread per half.
e Each half further subdivided w/ new threads, etc.
¢ Depth is O(log n), which is optimal

e If have numProc processors then total time
O(n/numProc + log n)

straight-line code cost each layer is O(1) in parallel
instep 1

In practice

* Creating all threads and communication
swamps savings so

e use sequential cutoff about 500

e Don’t create two recursive threads
e one new and reuse old.

e Cuts number of threads in half.

Efficent DivideConquerParallelSum

Even Better

* Java threads too heavyweight -- space and time
overhead.

e ForkJoin Framework solves problems

e Standard as of Java 7.

To Use Library

e Create a ForkJoinPool

e Instead of subclass Thread, subclass RecursiveTask<V>
e Opverride compute, rather than run

* Return answer from compute rather than instance vble
o Call fork instead of start

e Call join that returns answer

e To optimize, call compute instead of fork (rather than
run)

e See ForkjoinFrameworkDivideConquerPSum

Getting Good Results

¢ Documentation recommends 100-50000 basic
ops in each piece of program

* Library needs to warm up, like rest of java, to
see good results

e Works best with more processors (> 4)

Similar Problems

e Speed up to O(log n) if divide and conquer and
merge results in time O(1).

* Other examples:

¢ Find max, min

Find (leftmost) elt satisfying some property
e Count elts satisfying some property
e Histogram of test results

e Called reductions

e Won't work if answer to 1 subproblem depends
on another (e.g. one to left)

