
Lecture 20: Parallelism &
Concurrency

CS 62
Spring 2015

Kim Bruce & America Chambers

Some slides based on those from Dan Grossman,
U. of Washington

Splay Tree

• Idea behind splay tree.
• Every time find, get, add: or remove an element x, move

it to the root by a series of rotations.

• Other elements rotate out of way while maintaining
order.

• Splay means to spread outwards

How to Splay in Words

• if x is root, done.

• if x is left (or right) child of root,
• rotate it to the root

• if x is left child of p, which is left child of g,
• do right rotation about g and then about p to get x to

grandparent position. Continue splaying until at root.

• if x is right child of p, which is left child of g,
• rotate left about p and then right about g. Continue

splaying until at root.

Results in moving node to root!

Splay Tree

• Modify tree operations:
• When do add, contains, or get, splay the elt.

• When remove an elt, splay its parent.

• Average depth of nodes on path to root cut in
half on average!

• If repeatedly look for same elements, then rise
to top -- and found faster!

• Splay code is ugly -- but follows ideas given

Example of modified
operation

public boolean contains(E val) {
 if (root.isEmpty()) return false;

 BinaryTree<E> possibleLocation = locate(root,val);
 if (val.equals(possibleLocation.value())) {
 root = possibleLocation;
 splay(root);
 return true;
 } else {
 return false;
}

Parallelism & Concurrency

Object-Oriented Design

What are objects?

• Objects have
• State/Properties — represented by instance variables

• Behavior — represented by methods
• accessor and mutator methods

Calculator

• Calculator class: User interface
• including buttons and display

• No real methods — construct & associate listeners

• State class: Current state of computation
• Methods invoked by listeners

• Communicate results to user interface

• Listener classes: Communicate from interface
to state

Model-View-Controller

State

• Instance variables:
• partialNumber, numberInProgress?, numStack,

calcDisplay

• Methods:
• addDigit(int Value)

• doOp(char op)

• enter, clear, pop

Model-View-Controller

• Dissociate user interface with the “model”
• “model” represents actual computation

• May have multiple alternate user interfaces
• Mobile vs laptop versions of UI

• Model should be unaffected by change in UI.

• In Java UI generally served by “event thread”
• If tie up event-thread with computation then user-

interface stops being responsive.

Designing Programs

• Identify the objects to be modeled
• E.g., Frogger game, Shell game

• List properties and behaviors of each object
• Model properties with instance variables

• Model behavior with methods (write spec)

• Refine by filling in the details
• Hold off committing to details of representation as long

as possible.

Implementation

• Write in small pieces. Test thoroughly before
moving on.

• Solve simpler problem first — use “stubs” if
necessary.

• Refactor as code becomes more complex.

Reading on Object-Oriented
Design

• Practical Object-Oriented Design in
Ruby: An Agile Primer by Sandi Metz, 2013

• Design Patterns: Elements of Reusable
Object-Oriented Software by “Gang of
Four”, 1994

Parallelism & Concurrency

• Single-processor computers going gone away.

• Want to use separate processors to speed up computing
by using them in parallel.

• Also have programs on single processor running in
multiple threads. Want to control them so that program
is responsive to user: Concurrency

• Often need concurrent access to data structures (e.g.,
event queue). Need to ensure don’t interfere w/each
other.

History

• Writing correct and efficient multithread code
is more difficult than for single-threaded
(sequential).

• From roughly 1980-2005, desktop computers
got exponentially faster at running sequential
programs
• About twice as fast every 18 months to 2 years

More History

• Nobody knows how to continue this

• Increasing clock rate generates too much heat

• Relative cost of memory access is too high

• Can keep making “wires exponentially
smaller” (Moore’s “Law”), so put multiple
processors on the same chip (“multicore”)

• Now double number of cores every 2 years!

What can you do with
multiple cores?

• Run multiple totally different programs at the
same time
• Already do that? Yes, but with time-slicing

• Do multiple things at once in one program
• Our focus – more difficult

• Requires rethinking everything from asymptotic
complexity to how to implement data-structure
operations

Parallelism vs. Concurrency

• Parallelism:
• Use more resources for a faster answer

• Concurrency
• Correctly and efficiently allow simultaneous access

• Connection:
• Many programmers use threads for both

• If parallel computations need access to shared resources,
then something needs to manage the concurrency

Analogy
• Typical CS1 idea:

• Writing a program is like writing a recipe for one cook
who does one thing at a time!

• Parallelism:
• Hire helpers, hand out potatoes and knives

• But not too many chefs or you spend all your time
coordinating (or you’ll get hurt!)

• Concurrency:
• Lots of cooks making different things, but only 4 stove

burners

• Want to allow simultaneous access to all 4 burners, but
not cause spills or incorrect burner settings

Models Change

• Model: Shared memory w/explicit threads

• Program on single processor:
• One call stack (w/ each stack frame holding local variables)

• One program counter (current statement executing)

• Static fields

• Objects (created by new) in the heap (nothing to do with
heap data structure)

Multiple Theads/Processors

• New story:
• A set of threads, each with its own call stack & program

counter

• No access to another thread’s local variables

• Threads can (implicitly) share static fields / objects

• To communicate, write somewhere another thread reads

Shared Memory

…

pc=0x…

…

pc=0x…

…

pc=0x…

…

Threads, each with own
unshared call stack and current
statement (pc for “program
counter”) local variables are
numbers/null or heap references

Heap for all objects and
static fields

Other Models
• Message-passing:

• Each thread has its own collection of objects.
Communication is via explicit messages; language has
primitives for sending and receiving them.

• Cooks working in separate kitchens, with telephones

• Dataflow:
• Programmers write programs in terms of a DAG and a

node executes after all of its predecessors in the graph

• Cooks wait to be handed results of previous steps

• Data parallelism:
• Have primitives for things like “apply function to every

element of an array in parallel”

