
CS 51 Fall 2015

CS 51 Homework Laboratory # 13
Nibbles

Objective: To gain experience with arrays in Java.

—

The Problem I am asking you to redo a Grace assignment in Java to get more experience with
writing code in Java. Rather than redoing the entire assignment, I am asking you only to do part 1.

This assignment asks you to implement the game of Nibbles. Nibbles is a snake. It moves around
a field, looking for food. Unfortunately, it’s not a very clever snake. It will try to eat anything it can
reach. When it eats food, it grows. When it eats the electric fence around its field, it dies. When it
gets all twisted up, it can even try to eat itself, which also causes it to die. The player of the game will
control the movement of the snake. The objective, of course, it to eat as much food, and grow as much
as possible, without dying.

As usual, start by dragging a copy of the starting folder from the server.
Below is a picture of Nibbles. In the picture, Nibbles is the winding black ribbon that looks a bit

like the top of a question mark. The small gray rectangle is the food. A user controls the movement of
the snake with the arrow keys on the keyboard. Important: You must click on the window displaying
the snake before your program will respond to the arrow keys! The snake constantly moves by extending
its “head” in the direction indicated by the last arrow key the user presses. While it is hard to tell from
the picture, when the picture was taken, the snake’s head was the square just below and to the right
of the food. It was moving to the left on the screen. The square at the bottom of the question mark
is the end of the snake’s tail. Normally, each time the head moves into a new cell, the last cell of the
snake’s tail is removed from the screen. If the snake manages to eat the food, it becomes a few squares
longer. It does not grow all at once. Instead, for a few steps after it eats, the snake’s head is allowed
to move into new squares while none of the squares in the tail are removed, thus simulating the growth
of the tail. Note that the snake can go straight or it can turn, but it cannot reverse its direction with
a single click of an arrow key.

If you want to see how to win at nibbles, go to http://9gag.com/gag/aOq7X16.

1

CS 51 Fall 2015

Design The Nibbles program consists of 5 classes:

• Snake - an ActiveObject extension that animates the snake as it slithers around the screen,

• NibbleField - a class used to represent the 2D grid that the snake lives within,

• Nibbles - the window controller that initializes the display and handles the user input,

• Position - a simple class that is used to represent positions within the NibbleField, and

• Direction - a class whose values are used to represent the four directions in which the snake can
move: UP, DOWN, LEFT and RIGHT.

Initially, we will give you working code for all but the Snake class. We will ask you to implement
the snake using our implementations of the other four classes. Then, we will ask you to switch to a
version of the NibbleField class that is not complete and add the missing pieces needed to make it
work with the other code.

The Nibbles Class: The Nibbles class begins by creating the field and the snake. It then receives
the clicks of the arrow buttons and tells the snake to change direction accordingly.

The Position Class: The field on which the snake moves is divided up into a grid like a checkerboard.
While the boundaries between the cells of this grid are not visible on the screen as the game is played,
the cells determine where it is possible to put the food and the pieces of the snake’s body. The picture
below shows how the image of the snake and the food shown above might look if the grid in which the
game is played was visible.

Each cell in this array can be precisely identified by two numbers indicating the row and column in
which the cell is located. For example, in the picture the food is located in row 2 and column 6, and
the head of the snake is found at row 3 and column 7. We can write these positions as (2,6) and (3,7).
The Position class is used to combine such a pair of grid coordinates into a single object much as an
object of the Location class encapsulates the x and y coordinates of a point on the canvas as a single
object. Unlike canvas coordinates, the row and column numbers identifying a cell in our Nibbles grid
must be integers. Also, the convention is to write the number that describes the vertical position of

2

CS 51 Fall 2015

a cell before the number that describes its horizontal position. This is the opposite of the convention
used with canvas coordinates.

The Position constructor takes a row and a column as parameters:

public Position (int row, int col)

In addition to this constructor, the Position class provides the following methods:

public int getRow();

public int getCol();

public boolean equals(Position otherPos);

public Position translate(Direction dir);

The individual row and column values can be extracted from a Position using the getRow and getCol

accessor methods. The boolean equals method checks if two Positions are equivalent. The translate
method is explained shortly in the discussion of the Direction class.

The Direction Class: The class Direction is used to encode the direction in which the snake is
currently moving. There are four possibilities: Direction.UP, Direction.DOWN, Direction.LEFT and
Direction.RIGHT.

Internally, the representation of a Direction is similar to that used for Locations. A Direction

is just a pair of values indicating how far the snake’s head should move in the horizontal and vertical
directions. Each of these two values can be either 0, 1 or -1.

The most important method used with Direction values is actually associated with the Position

class rather than with the Direction class.

public Position translate(Direction curDirection);

Given a Position named curPos and a Direction named curDir, an invocation of the form:

curPos.translate(curDir)

will return a new position obtained by moving one step from curPos in the direction described by
curDir.

In addition, the Direction class provides several methods that can be used to manipulate Direction
values themselves:

public int getXchange();

public int getYchange();

public boolean isOpposite(Direction newDir);

The getXchange and getYchange methods return the amount of horizontal or vertical motion (either
0, 1 or -1) associated with a Direction value. The isOpposite method returns true if the Direction

passed as a parameter is the opposite of the direction on which the method is invoked.

The NibbleField Class: The NibbleField represents the actual contents of the game grid. Most of
the necessary information is encoded using a two-dimensional array containing one entry for every cell
in the grid. The entries of the array hold FilledRects. If an entry in the array is null, it means there
is nothing in the corresponding cell. If it is not null, it refers to the FilledRect drawn on the screen
to represent the food or the part of the snake that occupies the corresponding cell in the game grid.

The only parameter expected by the constructor for a NibbleField is the canvas.

3

CS 51 Fall 2015

public NibbleField(DrawingCanvas canvas);

The constructor uses the getWidth and getHeight methods of the canvas to decide how big the game
grid should be. It also places a piece of food at a random location within the field.

The Snake will interact with the NibbleField using several methods:

public void addItem (Position pos);

public void removeItem (Position pos);

public boolean outOfBounds (Position pos);

public boolean containsSnake(Position pos);

public boolean containsFood(Position pos);

public void consumeFood();

public Position getCenter();

The snake can ask the NibbleField to place a piece of its body (probably its head) in a given cell
by invoking the addItem method. It can also remove a part of its body (usually its tail) from the screen
by invoking removeItem.

Before moving, the snake can use the outOfBounds method to ask the field if a particular position
is out of bounds. The snake can determine whether a given position in the field contains food or some
part of the snake’s body using the containsFood and containsSnake methods.

When the snake gets lucky enough to eat the food, it can tell the field to remove the food and place
a new piece of food somewhere else on the field by invoking the consumeFood method. This method
should be called before moving part of the snake into the cell that had contained the food.

Finally, rather than starting its life in some random position, the snake likes to start in the center
of the grid. To do this it has to ask the field where the center is using getCenter.

The Snake Class: The most interesting class is the Snake. The Snake is an active object. It
continuously moves the snake around the field checking at each step whether the snake has found food
and should grow or has made an illegal move (out of bounds or into its own body) and should die.

If the user types an arrow key, the Nibbles controller gets the input and calls the setDirection

method of the snake

public void setDirection (Direction newDirection);

to inform the snake that the direction in which it moves should be changed. The snake should ignore
the controller if the new direction is the opposite of the snake’s current direction.

The snake moves and tries to eat inside its run method. Between each move, it pauses for a while
so that it slithers at a realistic speed. The snake normally moves by stretching its head forward one
cell and then removing the last piece of its body from the screen.

We urge you to implement this motion using two separate methods: one to stretch the snake by
adding a cell next to its current head and the other to shrink the snake by removing its tail. This
will make it easy to make the snake grow after it finds some food. After the snake finds food, you can
make it grow by letting it take several steps in which it stretches but does not invoke your “shrink”
method. Similarly, when the snake should die you should make it gradually disappear from the screen
by repeatedly invoking your “shrink” method without calling “stretch”.

To implement “stretch” and “shrink”, you will keep track of the Positions of the parts of the snake’s
body in an array. In addition, you will need an int instance variable to keep track of the snake’s current
length. Since the snake’s length changes as the game is played, you will have to create an array large
enough to hold as large a snake as you can imagine any player will ever manage to produce. Make sure
to check that the snake never becomes larger than the array.

4

CS 51 Fall 2015

Each element of the array in the Snake class identifies the Position of one portion of the snake’s
body. For example, consider the snake shown in the pictures of the game field shown above and repeated
below:

Since this snake occupies 10 cells of the field, 10 elements in a Position array would be used to
describe it. The picture below suggests what the array would look like. As a shorthand in this figure,
we have written pairs like (3,7) and (5,10) to represent Position values, but you should realize that
you can’t actually do this in your code. Instead of (3,7) you would have to say new Position(3,7).

The cell at one end of the snake is in row 3, column 7 and this Position is stored in the 0th element
of the array. The piece next to this piece is at row 3, column 8 and its Position is shown in the
1st element of the array. The positions of the remaining pieces of the snake’s body are placed in the
remaining cells of the array in consecutive order.

You can’t tell from either the picture of the game grid or the Position array which end of the snake
is the head and which end is the tail. This is because the pieces of the snake can be stored in the array
in either order as long as you remember which order you decided to use while writing the code for your
Snake class.

If you decide to put the head in the 0th element of the array and the tail in the last used element
of the array, then the code you write to “stretch” the snake will have to include a loop to move all the
elements in the array over by one position to make room for the new head. On the other hand, you can
shrink the snake very easily by just removing the last element in the array.

If you decide to put the tail in the 0th element and the head in the last element, then the code to
stretch the snake will be simple, but the code to shrink the snake will require moving all the elements
of the array down one slot to fill in the vacancy left when the old tail is removed. Either way, make
sure that you check to make sure that the array is not full before adding a new piece to the snake’s
body. If it is full, you can either simply continue the game but not let the snake grow any more or stop
the game declaring that the player has won.

Be sure to examine the cell where the snake is moving before you move. Once it has moved it will
be impossible to determine whether it contained the snake or food.

5

CS 51 Fall 2015

As we have suggested above, your snake should grow by being allowed to make several moves in
which the snake stretches but does not shrink. Similarly, when the snake dies you should make it wither
away rather than simply stopping the program. You can do this by writing a separate, simple loop that
repeatedly shrinks the snake and pauses.

Think about the design of the run method carefully in your design. A well thought-out loop can
make the program relatively simple, while if you just throw it together you will get a very badly designed
mish-mash of confusing code.

Your Job This lab has two parts, but you only need to do the first. For the first part, we will provide
all the classes for you except the Snake class. Your job for Part I is to write a complete version of the
Snake class. To work on part I, you should start Eclipse and import the program in NibblesStarterI.
This folder does not include the NibblesField class so several errors will be indicated in Eclipse. You
can make these go away by adding NibbleField.jar to your project.

Click on the project folder or any of the .java files. From the Project menu select “properties”.
When the window pops up, click on the Libraries tab. The OBJECTDRAW library should be visible in
the text area showing. If NibbleField.jar is also visible, please select it and click on the Remove button
as it likely has the wrong path to the file. Click on the “Add External Jars” button on the right and
select “NibbleField.jar” from the window that pops up. Click “OK” and most of the error messages
(aside from a few warnings) will disappear. You are now ready to complete the Snake class.

The snake constructor is passed the NibblesField that it wanders through as its only parameter.
The constructor should create and initialize the array to hold the location of its body. It should use the
field’s getCenter method to decide where to place the snake initially. The snake should begin moving
UP from this position. During the first few steps it takes, the snake should be allowed to grow to its
initial length (3). You are responsible for defining a run method, a stretch method, a shrink method,
as well as any additional methods you need to make the snake behave as described. You should not
need to modify any other classes.

You need only bring in a design for the stretch and shrink methods as they are the ones that will
involve extra work because you are using arrays rather than lists. Remember that now YOU will have
to keep track of the current length of the snake! There are no methods addFirst and addLast.

For the rest, just bring your old Grace solution to this assignment. Do review this solution before
coming to lab. You will want to take advantage of the presence of the TA’s and instructor in the lab
to help with Java issues rather than filling the time trying to understand your old solution.

Implementation Here are some hints on how to approach the problem of implementing the snake.
Start by constructing a snake that is only 1 cell long. Write a loop in the run method that will

make this snake move in a straight line by calling grow and shrink. As the snake tries to move out of
the bounds of the game, have the snake detect the boundary and die. The snake should die by falling
out of the main loop of the run method.

Once that is working, use the values passed in the setDirection method in response to arrow clicks
to cause the snake to change direction. At this point, your program should work correctly until the
snake runs into the food (at which point it will encounter an error in our NibbleField class).

Now, get the snake to eat the food. Change the loop that moves the snake so that after the snake
eats the food, the snake will take several steps in which it stretches but skips the call to shrink. You
will need a counter to keep track of how many steps the snake has taken since it ate to do this.

Now that your snake can grow to be longer than one cell, it has to worry about running into itself.
Add code to make the snake die if it runs into itself. Add a short loop after the main loop that slowly
removes all the pieces of the snake from the screen when it dies.

6

CS 51 Fall 2015

Submitting Your Work When your work is complete you should deposit in the dropoff folder a copy
of the entire Lab13-Nibbles folder. Before you do this, make sure the folder name includes the phrase
“Lab 13” and your name. Also make sure to double check your work for correctness, organization and
style. This assignment is due Tuesday or Wednesday at 11 PM as usual.

7

CS 51 Fall 2015

Table 1: Grading Guidelines

Value Feature
Design preparation (2 pts total)

2 pt. shrink and stretch methods
Readability (5 pts total)

2 pts. Descriptive comments
1 pts. Good names
1 pts. Good use of constants
1 pt. Appropriate formatting

Code Quality (6 pts total)
1 pt. conditionals and loops
2 pt. General correctness/design/efficiency issues
1 pts. Parameters, variables, and scoping
2 pts. Good correct use of arrays

Correctness (5 pts total)
1 pt. Moving
1 pt. Turning
1 pt. Eating
1 pt. Growing
1 pt. Dying

8

