
CS 51P December 5, 2022

Lecture 23: Errors and Exceptions

Announcements
• Final Project due Friday 12/9 at 5pm

• Final Exam next Tuesday (12/13), 7-10pm
• Will take place in Edmunds 101/114
• Practice exams will be released on Slack tomorrow

• Lots of help available
• Lots of office hours/mentor sessions this week
• Review session TBA (this weekend)
• One-on-one tutoring available through QSC

Common Types of Errors

• Syntax Errors: there is something wrong with the structure
of the program, and Python doesn't understand it

• Runtime Errors: something goes wrong while the program
is running (Exceptions)

• Semantic Errors: the program runs, but it doesn't do what
you want it to do

Handling Syntax Errors
1. Find the bug

2. Do you see the problem?
1. If yes, fix it!
2. If no, try running through the list of common syntax bugs
3. If still no, check your class notes, discuss the problem abstractly

with a friend ("what's the right syntax for…"), or ask a
TA/instructor (it's ok to get help!)

Common Syntax Errors
• Misspelling a variable name or a function name
• Missing quotation marks around a string
• Mismatched parentheses or quotation marks
• Missing a colon at the end of an if/while/for statement
• Using = instead of ==
• Using a Python keyword as a variable name

Make sure you remembered to save your file
after making your changes!

Example
in = int(input("Pick a number\n"))
if in = 13:

print("I am also fond of the number 13!")
elif in > 13:

print("I am fond of the number 13, which is "
+ str(in-13) + " less than " + str(in)

else
print("I am fond of the number 13, which is "

+ str(13-in) + " more than " + str(in)
in2 = input("Do you like tea?)
while in2 != "yes" and != "no":

in2 = input("Please answer yes or no. Do you like tea?")
if in2 == "yes":

print("Great!")
else:

print("That's too bad.")
print("Bye!)

SyntaxError

SyntaxError

SyntaxError
SyntaxError

SyntaxError

SyntaxError

SyntaxError

SyntaxError

Handling Runtime Errors: Exceptions
• NameError: Python doesn't recognize a (variable) name
• Find the bug!
• Did you forget quotation marks around a string?
• Did you misspell a variable name? Make a typo?
• Is the variable you are trying to use in scope? Use before define?

• TypeError: Python can't perform that operation/function on that
type
• Find the bug!
• Are the types that the error reports the type you expected?
• Add a print statement on the previous line and print out all the

variables/values on that line. Are they what you expect?

• ValueError: Python can't perform that operation/function on that
value
• Find the bug!
• Add a print statement on the previous line and print out all the

variables/values on that line. Are they what you expect?

Take a break

def example2(filename):
s = 0

file = open(filename, "r")
for i in file:

s = s + int(i)
file.close()

return s

• what if the file doesn't exist?
• what if it does exist but you don't have access permissions?
• what if the file exists and you can open it for reading, but it

doesn't contain integers?

What if your code depends on inputs you
don't control?

What if your code depends on inputs you
don't control?

• Best answer: check whether input will work before using it
• if str.isdigit(user_in)
• if k in dict.keys()

• Alternate answer: try it and crash if an error occurs

• Alternate answer: try it and recover if an error occurs
• Warning: very inefficient

Exception Handling
• A flexible mechanism for handling errors

try:
code to execute

except:
what to do if there's an error

def example2(filename):
s = 0

file = open(filename, "r")
for i in file:

s = s + int(i)
file.close()

return s

Example: Exception Handling
def exception_v0(filename):

s = 0

try:
file = open(filename, "r")
for i in file:

s = s + int(i)
file.close()

except:
print("An error occurred")
s = -1

print(s)

Exercise
• Write a function return_int that asks the user to enter

an integer. If the user enters an integer, the function
returns that integer. If the user does not enter an integer,
the function returns 0.

• Use exceptions to handle the case where the user does
not enter an integer. Do not use an if statement.

Exceptions
• A flexible mechanism for handling errors

try:
code to execute

except:
what to do if there's an error

try:
code to execute

except <Error1>:
what to do if Error1 occurs

except <Error2>:
what to do if Error 2 occurs

def exception_v1(filename):
s = 0

try:
file = open(filename, "r")
for i in file:

s = s + int(i)
file.close()

except IOError:
print("problem opening file")
s = -1

except ValueError:
print("problem with non-integer")
file.close()
s = -1

print(s)

Exceptions
• A flexible mechanism for handling errors

try:
code to execute

except:
what to do if there's an error

try:
code to execute

except <Error1>:
what to do if Error1 occurs

except <Error2>:
what to do if Error 2 occurs

try:
code to execute

except <Error1>:
what to do if Error1 occurs

except <Error2>:
what to do if Error 2 occurs

else:
additional code if no errors

def exception_v2(filename):
s = 0
try:

file = open(filename, "r")
except IOError:

print("problem opening file")
s = -1

else:
try:

for i in file:
s = s + int(i)

except ValueError:
print("problem with non-integer")
s = -1

file.close()

print(s)

def f(x,y):
try:

try:
for i in x:

print(int(i))
print(x[y])

except ValueError:
print(1)

except TypeError:
print(2)

except IndexError:
print(3)

else:
print(4)

print(5)
except:

print(6)

• What happens when you
evaluate f("abc","a")?

• What happens when you
evaluate f([1,2,3],4)?

• What happens when you
evaluate f({"1":"2"},1)?

Exercise
• Write a function always_return_int that repeatedly asks

the user to enter an integer. Once the user enters an
integer the function returns that integer.

• Use exceptions to handle the case where the user does
not enter an integer. Do not use an if statement.

Debugging…

