
CS 51P November 28, 2022

Lecture 21: Object-Oriented Programming

Announcements
• I'm back for the rest of the semester!

• Course evals are available. We'll reserve time in class on
Wednesday for you to fill them out (laptop recommended).

• Project proposals are due tomorrow. Meet with course
staff during lab to discuss and get checked off.

• Projects due next Friday (December 11). No late days.

Types in Python

Primitive Types

• int
• float
• bool

Objects

• list
• dictionary

• Create your own…

x y

5

x = 5
y = 5

x = [5]
y = [5]

x

[5]

y

[5]>>> x == y
True
>>> x is y
True

>>> x == y
True
>>> x is y
False

class: programmer-defined type
• Defining a type:
• Step 1: how would you describe it? what distinguishes one object

of this type from another?

• Example: Classroom type
• attributes: building, room number, capacity, accessible

Syntax: Defining a Class

class Classroom:

self.building
self.room_number
self.capacity

= None
= None

= None

def __init__(self):

name of your new type

class attributes

Creating and using a class

room1 = Classroom()

room1.building = "Sever Commons"
room1.room_number = "102"
room1.capacity = 36

print(room1.bulding, room1.room_number)
print(room1.capacity)

Exercise 1
• Define a class Rectangle with attributes width and height

and method __init__

• Define a function create_rect(w,h) that takes two
arguments w and h, creates a rectangle with width w and
height h, and returns that rectangle.

Special methods
• __init__
• constructor
• called when you create an object

• __str__
• called when you print an object

def __str__(self):
return(self.building + self.room_number

+ ", capacity " + str(self.capacity))

def __init__(self):
self.building = None
self.room_number = None
self.capacity = None

def __init__(self, building, room, capacity):
self.building = building
self.room_number = room
self.capacity = capacity

special methods have double underscores in name

self refers to this instance. always
the first parameter.

self.variable_name refers to instance
attributes (i.e., variables)

all methods have self as the first parameter
even if they have no other parameters

Exercise 2
• Add a second constructor to your class Rectangle that

takes three parameters (self, width, and height).
• Add a __str__ method to your class Rectangle so that the

following code:

prints

my_rectangle = Rectangle(47, 4)
print(my_rectangle)

47x4

class: programmer-defined type
• Defining a type:
• Step 1: how would you describe it? what distinguishes one object

of this type from another?
• Step 2: what can an object of this type do?

• Example: Classroom type
• attributes: building, room number, capacity, accessible
• methods: find current attribute values, change capacity, check

capacity

class Classroom:
def __init__(self, building, room, capacity):

self.building = building
self.room_number = room
self.capacity = capacity

def __str__(self):
return(self.building + self.room_number +

", capacity " + str(self.capacity))

def get_building(self):
return self.building

def get_room_number(self):
return self.room_number

def set_capacity(self, capacity):
self.capacity = capacity

def check_capacity(self, num):
return num <= self.capacity

Additional Methods

methods that modify the current
value in an attribute are called
setter or mutator methods

methods that return the current
value in an attribute are called
getter or accessor methods

Functions defined in a class are
called methods

Example
Write a function enough_space that takes two parameters:
rooms (a list of Classrooms) and num_people (int).
The function should return a list of rooms that have capacity
greater than or equal to num_people.

Write a main function that creates a list of two classrooms
and then calls enough_space with that list and prints the
results.

Exercise 3
• Modify your class Rectangle to add an additional method

area that returns the area of the rectangle

• Write a main function that creates two rectangles, uses
the area method to compute the area of each and then
prints which one is bigger

default parameters

• Can use default parameters in functions

• Example: what is the default parameter in function input

class Classroom:
def __init__(self, building, room, capacity, accessible=True):

self.building = building
self.room_number = room
self.capacity = capacity
self.accessible = accessible

mason22 = Classroom("mason", 22, 18, False)
edmunds114 = Classroom("edmunds", 114, 40)

style

• Can use default parameters in functions

class Classroom:
'''
Class representing a classroom with a location, a capacity,
and whether it is accessible

[... as classes get more complex want to specify
instance attributes, methods ...]

'''

def __init__(self, building, room, cap, accessible=True):
'''
Create a new Classroom with given location, capacity, and

accessibility
param building (str): building name
param room (str): room number
param cap (int): capacity
param accessible (bool): if room is accessible (default True)
'''

