Lecture 21: Neural Networks

CS <u>51</u>P

November 2, 2022

Tom Yeh he/him/his

Slides adopted from CS51A Spring 2022

Neural Networks

Neural Networks try to mimic the structure and function of our nervous system

People like biologically motivated approaches

Our Nervous System

Neuron

Our nervous system: the computer science view

Impulse

Input portion of neuron

the human brain is a large collection of interconnected neurons

a **NEURON** is a brain cell

- they collect, process, and disseminate electrical signals
- □ they are connected via synapses
- they FIRE depending on the conditions of the neighboring neurons

Our nervous system

The human brain

- □ contains ~10¹¹ (100 billion) neurons
- □ each neuron is connected to ~10⁴ (10,000) other neurons
- □ Neurons can fire as fast as 10⁻³ seconds

How does this compare to a computer?

Man vs. Machine

10¹¹ neurons 10¹¹ neurons 10¹⁴ synapses 10⁻³ "cycle" time

10¹¹ transistors

10¹¹ bits of ram/memory

10¹³ bits on disk

10⁻⁹ cycle time

Brains are still pretty fast

Who is this?

Brains are still pretty fast

If you follow basketball, you'd be able to identify this person in under a second!

Given a neuron firing time of 10⁻³ s, how many neurons in sequence could fire in this time?

☐ A few hundred, maybe a thousand

What are possible explanations?

- either neurons are performing some very complicated computations
- □ brain is taking advantage of the **massive** parallelization (remember, neurons are connected to ~10,000 other neurons)

M

Artificial Neural Networks

our approximation

W is the strength of signal sent between A and B.

If A fires and w is **positive**, then A **stimulates** B.

If A fires and w is **negative**, then A **inhibits** B.

A given neuron has many, many connecting, input neurons

If a neuron is stimulated enough, then it also fires

How much stimulation is required is determined by its threshold

W

Possible threshold functions

hard threshold

$$g(x) = \begin{cases} 1 & if \ x \ge threshold \\ 0 & otherwise \end{cases}$$

sigmoid

Takes an input, outputs a value between 0 and 1

$$g(x) = \frac{1}{1 + e^{-ax}}$$
 Each curve is a sigmoid function

100

100

100

r,e

some inputs are provided/entered

each perceptron computes and calculates an answer

those answers become inputs for the next level

inputs

finally get the answer after all levels compute

Different kinds/characteristics of networks

How are these different?

inputs hidden units/layer

Feed forward networks

inputs

Recurrent network

Output is fed back to input

Can support memory!

How?

Output from previous step

Training the perceptron

First wave in neural networks in the 1960's

Single neuron

Trainable: its threshold and input weights can be modified

If the neuron doesn't give the desired output, then it has made a mistake

Input weights and threshold can be changed according to a learning algorithm

Examples - Logical operators

AND – if all inputs are 1, return 1, otherwise return 0

OR – if at least one input is 1, return 1, otherwise return 0

NOT – return the opposite of the input

XOR – if exactly one input is 1, then return 1, otherwise return 0

X ₁	X ₂	x ₁ and x ₂
0	0	0
0	1	0
1	0	0
1	1	1

X ₁	X ₂	x ₁ and x ₂
0	0	0
0	1	0
1	0	0
1	1	1

Output *y*

Output *y*Output is 1 only if all inputs are 1

Inputs are either 0 or 1

м

AND

Inputs are either 0 or 1

OR

X ₁	X ₂	x_1 or x_2
0	0	0
0	1	1
1	0	1
1	1	1

OR

X ₁	X ₂	x_1 or x_2
0	0	0
0	1	1
1	0	1
1	1	1

Output *y*

OR

X ₁	X ₂	x_1 or x_2
0	0	0
0	1	1
1	0	1
1	1	1

Output *y*Output is 1 if at least 1 input is 1

Inputs are either 0 or 1

OR

OR

Inputs are either 0 or 1

NOT

X ₁	not x ₁	
0	1	
1	0	

NOT

X ₁	not x ₁	
0	1	
1	0	

10

NOT

How about...

X ₁	X ₂	X ₃	x ₁ op x ₂
0	0	0	1
0	1	0	0
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	1
1	0	1	1
1	1	1	0

Training neural networks

Learn the individual weights between nodes

Learn individual node parameters (e.g., threshold)

A method to the madness

blue = positive

yellow triangles = positive

all others negative

How did you figure this out (or some of it)?

Training neural networks

X ₁	X ₂	X 3	x ₁ and x ₂
0	0	0	1
0	1	0	0
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	1
1	0	1	1
1	1	1	0

- start with some initial weights and thresholds
- 2. show examples repeatedly to NN
- 3. update weights/thresholds by comparing NN output to actual output

Demo

Try out a tutorial on colab

https://www.tensorflow.org/tutorials/keras/classification