Tom Yeh he/him/his

Slides adopted from CS51A
Spring 2022

Neural Networks

Neural Networks try to mimic the structure and function of our nervous system

People like biologically motivated approaches

Our Nervous System

Our nervous system:

the computer science view

the human brain is a large collection of interconnected neurons
a NEURON is a brain cell
\square they collect, process, and disseminate electrical signals
\square they are connected via synapses
\square they FIRE depending on the conditions of the neighboring neurons

Our nervous system

The human brain
\square contains $\sim 10^{11}$ (100 billion) neurons
\square each neuron is connected to $\sim 10^{4}(10,000)$ other neurons
\square Neurons can fire as fast as 10^{-3} seconds

How does this compare to a computer?

Man vs. Machine

10^{11} neurons
10^{11} neurons
10^{14} synapses
10^{-3} "cycle" time

10^{11} transistors
10^{11} bits of ram/memory
10^{13} bits on disk
10^{-9} cycle time

Brains are still pretty fast

Who is this?

Brains are still pretty fast

If you follow basketball, you'd be able to identify this person in under a second!

Given a neuron firing time of $10^{-3} \mathrm{~s}$, how many neurons in sequence could fire in this time?
\square A few hundred, maybe a thousand
What are possible explanations?
\square either neurons are performing some very complicated computations
\square brain is taking advantage of the massive parallelization (remember, neurons are connected to $\sim 10,000$ other neurons)

Artificial Neural Networks

W is the strength of signal sent between A and B.

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

A given neuron has many, many connecting, input neurons

If a neuron is stimulated enough, then it also fires

How much stimulation is required is determined by its threshold

A Single Neuron/Perceptron

Possible threshold functions

hard threshold

$$
g(x)=\left\{\begin{array}{cc}
1 & \text { if } \mathrm{x} \geq \text { threshold } \\
0 & \text { otherwise }
\end{array}\right.
$$

Takes an input, outputs a value between 0 and 1

$$
g(x)=1 \text { Each curve is a sigmoid function }
$$

A Single Neuron/Perceptron

A Single Neuron/Perceptron

A Single Neuron/Perceptron

A Single Neuron/Perceptron

A Single Neuron/Perceptron

Neural network

inputs

Individual perceptrons/ neurons

Neural network

some inputs are provided/entered

Neural network

inputs

Neural network

inputs

those answers become inputs for the next level

Neural network

inputs

finally get the answer after all levels compute

Neural networks

Different kinds/characteristics of networks

inputs

inputs

inputs

How are these different?

Neural networks

inputs
inputs

hidden units/layer

Feed forward networks

Neural networks

inputs

Recurrent network

Output is fed back to input

Can support memory!

How?

Output from previous step

Training the perceptron

First wave in neural networks in the 1960's

Single neuron

Trainable: its threshold and input weights can be modified

If the neuron doesn't give the desired output, then it has made a mistake

Input weights and threshold can be changed according to a learning algorithm

Examples - Logical operators

AND - if all inputs are 1, return 1 , otherwise return 0

OR - if at least one input is 1 , return 1, otherwise return 0

NOT - return the opposite of the input

XOR - if exactly one input is 1 , then return 1 , otherwise return 0

AND

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

AND

Input x_{1}

AND

Input x_{1}

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

\rightarrow Output y
Output is 1 only if all inputs are 1

Inputs are either 0 or 1

AND

AND

Inputs are either 0 or 1

OR

x_{1}	x_{2}	x_{1} or x_{2}
0	0	0
0	1	1
1	0	1
1	1	1

Inputs are either 0 or 1

OR

OR

NOT

x_{1}	not x_{1}
0	1
1	0

x_{1}	not x_{1}
0	1
1	0

NOT

How about...

x_{1}	x_{2}	x_{3}	x_{1} op x_{2}
0	0	0	1
0	1	0	0
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	1
1	0	1	1
1	1	1	0

Training neural networks

Positive or negative?

NEGATIVE

Positive or negative?

NEGATIVE

Positive or negative?

POSITIVE

Positive or negative?

NEGATIVE

Positive or negative?

POSITIVE

Positive or negative?

POSITIVE

Positive or negative?

NEGATIVE

Positive or negative?

POSITIVE

A method to the madness blue $=$ positive

yellow triangles = positive
all others negative

How did you figure this out (or some of it)?

Training neural networks

x_{1}	x_{2}	x_{3}	x_{1} and x_{2}
0	0	0	1
0	1	0	0
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	1
1	0	1	1
1	1	1	0

1. start with some initial weights and thresholds
2. show examples repeatedly to NN 3. update weights/thresholds by comparing NN output to actual output

Demo

Try out a tutorial on colab

- https://www.tensorflow.org/tutorials/keras/classification

