
Lecture 20: Computer Architecture

Outline
● What is a computer

● What is memory

● Memory hierarchy

Old School Computer

New School Computer

Parkour
Video

https://www.youtube.com/watch?v=tF4DML7FIWk
https://www.youtube.com/watch?v=tF4DML7FIWk

Data Center is the Computer

Inside the warehouse data center

Components of a Computer
■ Same 3 components for

all kinds of computers
■ Processor (CPU)
■ Memory
■ I/O

■ Processor executes instructions
■ Memory holds data (inst)

■ I/O transfers data to and from
■ Keyboard, mouse, network
■ Screen, printer, speaker
■ Flash drive, RAM,

■

Memory
● Memory is like a big list of bytes

● 1 byte is 8 bits

● 1 bit simply stores 0 or 1

 Memory

Index Value

0x1

0x0

0xFF...

‘T’

‘i’

‘g’

‘e’

‘r’

 List

Index Value

0

1

2

3

4

Memory
● Memory is a big list of bytes

● Each byte of memory has a unique index

 Memory

Index Value

...
…

0x000

…

...

...

0x104

0x103

0x102

0x101

0x100

...

...

...

‘r’

‘e’

‘g’

‘i’

‘T’

...

...

‘T’

‘i’

‘g’

‘e’

‘r’

 Array

Index Value

0

1

2

3

4

Memory Address
● Memory is a big list of bytes

● Each byte of memory has a unique index

● The unique index that points to different

bytes is called the memory address

(commonly written in hexadecimal)

 Memory

Address Value

...
…

0x000

…

...

...

0x104

0x103

0x102

0x101

0x100

...

...

...

‘r’

‘e’

‘g’

‘i’

‘T’

...

...

‘T’

‘i’

‘g’

‘e’

‘r’

 Array

Index Value

0

1

2

3

4

Memory Address
● Memory is a big array of bytes

● Each byte has a unique index that is

commonly written in hexadecimal

● The unique index that points to different

bytes is called the memory address

Key: A memory address is an index to each byte of

memory

 Memory

Address Value

...
…

0

…

...

...

260

259

258

257

256

...

...

...

‘r’

‘e’

‘g’

‘i’

‘T’

...

...

‘T’

‘i’

‘g’

‘e’

‘r’

 Array

Index Value

0

1

2

3

4

What is a Reference (pointer)?

What is a Reference?
● Can think of a reference like an URL
● How do you share a google doc?

What is a Reference?
● Can think of a reference like an URL
● How do you share a google doc?

○ Click the blue share button

○ It creates an URL for you to share

○ The URL points to the actual document

○ Both parties can share the doc

https://docs.google.com/document/d/1r-JRgHCOTpwJ8Gl4TDNfyUZ
reBuYlVwe49UGGGa_KJI/edit?usp=sharing

What is a Reference?
● Can think of a reference like an URL
● How do you share a google doc?

○ Click the blue share button

○ It creates an URL for you to share

○ The URL points to the actual document

○ Multiple parties can share the doc

https://docs.google.com/document/d/1r-JRgHCOTpwJ8Gl4TDNfyUZ
reBuYlVwe49UGGGa_KJI/edit?usp=sharing

Pointer

Memory Address

Memory

URL

https://….

Google doc

What is a reference (pointer)?

● A reference is a variable that stores a
memory address

‘T’

2020

3.14159

x = ‘T’
y = 2020
z = 3.14159

x

y

z

Pointer

Memory Address

Memory

What is a Reference (pointer)?

● A reference is a variable that stores a memory
address

● A reference points to a location in memory

Pointer

Memory Address

Memory

‘T’

2020

3.14159

x

y

z

x = ‘T’
y = 2020
z = 3.14159

Pointer and Pointee

● Pointers do not store a value directly
● Pointers store a reference to another value

○ a memory address pointing to a location in memory

● The variable a pointer is pointing to is called the Pointee

leia (pointee)

vader (pointer)

2

Von Neumann Architecture (same as mergesort inventor):
Program is stored in memory - think of memory as a large list

1 Instruction = 32 bits or 64 bits

Program Execution:
Load instruction into processor (internal registers)

Inst Index
Index

Inst

Inst

Program Execution:
Load data into registers

Data Index
Index

Data

Data

Data

Data

Typically, we only have 32 - 64 registers. You can think of these as hardware variables!

Principle of Locality - aka Memory Hierarchy

All data in layers above resides in the layer below
What should we store closer to CPU? Farther from CPU?

Key: Mem closest to CPU is fast, expensive, and scarce. Mem farthest is slow, cheap, plenty.

More
Memory

Faster
Memory

Sources of Locality

● Temporal Locality
○ If a piece of data is used, it tends to be reused

● Spatial Locality
○ If a piece of data is used, nearby data will also be used soon

Registers

● Fastest, most expensive, tiny capacity
○ How fast is fast?

■ Registers operate at the same speed as a CPU’s clock
● A 3.33 GHz CPU has a clock period of 0.3ns
● Access to registers are usually single cycle (0.3ns)
● C (speed of light) is 3*108 m/s = 0.3 m/ns = 30 cm/ns = 10 cm/0.3 ns

○ Light can travel only 10cm in the span of of a clock period 0.3ns

● 32 - 64 registers per processor core
● Each holds 32 - 64 bits of data

Cache

● Faster, expensive, small capacity
● Slower than registers, but faster than main memory

○ 10 - 100 CPU cycles

● Typically, 1-3 levels (L1, L2, L3, etc.)
● 32-64 KB for L1, 128 - 512 KB for L2, 1MB+ for L3

Main memory (RAM)
Physical memory

● Fast, reasonably priced, average capacity
● Much slower than registers, but faster than disk
● 8 - 32 GB
● 100 - 500 CPU cycles
● All programs and data must fit in memory

○ Use virtual memory when we need memory > physical memory

○ Virtual memory gives each program the illusion of having all memory space

○ Utilize disk to store data that do not fit into physical memory

External memory (disk)

● Slow, cheap, large capacity
● Recent computers use solid state drives (SSDs)
● Hundred of GB to a few TB
● 20,000 CPU cycles latency

#3 - Principle of Locality - aka Memory Hierarchy

All data in layers above resides in the layer below
What should we store closer to CPU? Farther from CPU?

Key: Mem closest to CPU is fast, expensive, and scarce. Mem farthest is slow, cheap, plenty.

More
Memory

Faster
Memory

