Lecture 15: Recursion

CS 51P

October 26, 2022

Tom Yeh he/him/his

Definition

- Recursion: (noun) see recursion.
- A technique where a function, in order to accomplish a task, calls itself with a smaller part of the task
- 2 main parts:
- Base case(s) - problem is simple, solved directly
- Recursive case(s)
- Divide the problem into 1 or more simpler/smaller parts
- Invoke the function (recursively) on each part
- Combine the solutions of the parts into a solution for the problem

Writing recursive code

- Base case is usually easier, the case when you stop
- For recursive step
- How do we break the problem down into 2 parts:
- 1) One part that can be handled now
- 2) The answer from the smaller piece of the problem
- Assume recursive call does the right thing on the smaller problem
- How do we combine the 2 parts to get the overall answer
- Lots of practice

Self-Similarity

- Solving problems recursively involves identifying self-similarity
- An object is self-similar if it contains smaller copies of itself

circle_drawing_1

- Draw a set of circles (each circle has radius 20 smaller than the circle outside it), same bottommost point
- Once the radius is <20, draw filled in circle

circle_drawing_1b

- Draw a set of circles (each circle has radius 20 smaller than the circle outside it), same rightmost point
- Once the radius is <20, draw filled in circle

Extra practice: circle_drawing_2

- Symmetric version circle_drawing_1
- The circle() function draws in a counter-clockwise fashion

Exercise - Recursive Graphics

draw_triangles(x, y, size)
Draws recursively smaller triangles (1/2
size) until size is < 10

Exercise - Recursive Graphics

Now add code to count and return how many triangles we have.

triangle_drawing example

- What is the pattern being repeated?

Extra practice: tree_drawing(n, I, c)

- What is the pattern being repeated?

What do you need to specify to describe the smaller objects?

Fun recursive drawing website

http://recursivedrawing.com

