
CS 51P October 24, 2022

Lecture 14: Recursion

Tom Yeh
he/him/his

Class News
• Image manipulations lab deadline extended to Tue 10/25

Learning Goals
• Recursion

What is recursion?
• Wikipedia: ”Recursion occurs when a thing is defined in

terms of itself.”
• A technique for tackling large or complicated problems

by taking 1 “bite” of the problem at a time
• Divide and conquer

What is recursion?
• A powerful substitute for iteration (loops)
• Start by seeing the difference between iteration vs recursion
• Some problems can only be solved using recursion

• Results in elegant, shorter code when used well

• Often applied to sorting and searching problems

What is recursion?
• Can be used to express patterns seen in nature
• Object containing smaller copies of itself

How many students are in class?
• If I want to find out how many people are in class today,

but I don’t want to walk around and count each person.

• I am recruiting you to help, but I also want to minimize
each student’s amount of work.

How many students are in class?
• If I want to find out how many people are in class today,

but I don’t want to walk around and count each person.

• I am recruiting you to help, but I also want to minimize
each student’s amount of work.

• We can solve this problem recursively!

How many students are in class?
• Let’s focus on solving the problem for a single column of

students.

How many students are in class?
• Let’s focus on solving the problem for a single column of

students.

• I will ask the first person in the front row: “How many
people are sitting directly behind you in your column?”

How many students are in class?
• Student’s algorithm:
• If there is no one behind me, answer 0.
• If someone is sitting behind me:
• Ask that person: “How many people are sitting directly behind you in

your column?”
• When they respond with a value N, respond (N + 1) to the person who

asked me.

How many students are in class?
• Student’s algorithm:
• If there is no one behind me, answer 0.
• If someone is sitting behind me:
• Ask that person: “How many people are sitting directly behind you in

your column?”
• When they respond with a value N, respond (N + 1) to the person who

asked me.

• Can generalize to the entire classroom!

2 main components of recursion
• 1) Base case
• The simplest version of your problem that all other cases reduce to
• An occurrence that can be answered directly

2 main components of recursion
• 1) Base case
• The simplest version of your problem that all other cases reduce to
• An occurrence that can be answered directly

• What’s the base case for the demo?

2 main components of recursion
• 1) Base case
• The simplest version of your problem that all other cases reduce to
• An occurrence that can be answered directly

• What’s the base case for the demo?

• 2) Recursive case
• The step where you break down more complex versions of the task

into smaller occurrences
• Cannot be answered directly

• What is the recursive case for the demo?

Recursion overview
• Reduce problem into repeated, smaller tasks of the same form

• Recursion has 2 main parts: base case and recursive case

• Solution is built up as you come back up the call stack

• When solving recursively, look for self-similarity and think about
what info is stored in each stack frame

• Take the “recursive leap of faith” and trust the smaller tasks will
solve the problem for you!

Factorial example
• The number n factorial, n! in math notation, is

• n x (n – 1) x … x 3 x 2 x 1

Factorial example
• The number n factorial, n! in math notation, is

• n x (n – 1) x … x 3 x 2 x 1

• For example:
• 3! = 3 x 2 x 1 = 6
• 5! = 5 x 4 x 3 x 2 x 1 = 120
• 0! = 1 (by definition)

Factorial example
• The number n factorial, n! in math notation, is

• n x (n – 1) x … x 3 x 2 x 1

• For example:
• 3! = 3 x 2 x 1 = 6
• 5! = 5 x 4 x 3 x 2 x 1 = 120
• 0! = 1 (by definition)

• Let’s implement the factorial function!

Factorial function
• 5! = 5 x 4 x 3 x 2 x 1

Math view of factorials
• n! = 1 if n = 0
• n! = n x (n – 1)! Otherwise

• Convert to code:

Recursion in action
• Stack frame – one gets created each time a function is

called
• Stack is where information is stored in computer’s

memory
• Every time we call factorial(), we get a new copy of the

local variable n
• Stack frames go away once they return

Recursion review
• Reduce problem into repeated, smaller tasks of the same

form

• Recursion has 2 parts: base case and recursive case
• Each part may have multiple cases

• Solution is built up as you come back up the call stack

• When solving recursively, look for self-similarity and think
about what info is stored in each stack frame

Exercise: isPalindrome
• Write a recursive function to check if a string is

a palindrome
• Palidrome is word, number, phrase or other

sequence of symbols that reads the same
backwards and forwards.

C
ANNA
CIVIC

RACECAR
STEP ON NO PETS

STRESSED DESSERTS

isPalindrome
• Base cases:

• Recursive case:

Turtle graphics

Example - Recursive Graphics

draw_triangles(x, y, size)

Draws recursively
smaller triangles (1/2
size) until size is < 10

Counting Triangles

