Lecture 11: Nested Lists

CS 51P
October 12, 2022

Tom Yeh he/him/his

Class News

-How was the checkpoint?

- Assignment 5 - Image Manipulation
- Due date postponed by 2 days to Thursday for Fall Break

Learning Goals

- Nested Lists
- Images

Previously...

- A list is an ordered collection of elements
- a_list = ['a', 'b', 'c', 'd', 'e']

Matrices

- Can think of lists as a one-dimensional matrix
- What if you want to use a 2-dimensional matrix?
- Can create a list of lists aka a nested list!

2-Dimensional List

- 2-D list is a list of lists
- Each element of "outer" list is just another list
- Can think of this as a grid or matrix

- Example:
- 2-D list of users' friends or contacts
- Each element of outer list is a person's friends list
- matrix $=[[1,2,3],[4,5,6],[7,8,9]]$

2-Dimensional List

- 2-D list is a list of lists
- Each element of "outer" list is just another list
- Can think of this as a grid or matrix
- Example:
- matrix $=[$ [1, 2, 3], [4, 5, 6], [7, 8, 9]]

2-Dimensional List

- 2-D list is a list of lists
- Each element of "outer" list is just another list
- Can think of this as a grid or matrix
- Example:
- matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

- May be easier to visualize like this:
- matrix

$[1,2,3]$
$[4,5,6]$
:---
$[7,8,9]$

2-Dimensional List

- matrix
- matrix

1	2	3
0	1	2
4	5	6
0	1	2
7	8	9
0	1	2

2-Dimensional List

- To access elements, specify index in "outer" list first (row)
- Then index in "inner" list (column)
- matrix[0][0] $\rightarrow 1$
\cdot matrix[1][0] $\rightarrow 4$
\cdot matrix[2][2] $\longrightarrow 9$

2-Dimensional List

- To access elements, specify index in "outer" list first, then index in "inner" list
\cdot matrix[1][2] \longrightarrow ?
\cdot matrix[2][1] \longrightarrow ?
\cdot matrix[0][2] \rightarrow ?

2-Dimensional List

- What if we only specify one index?
- matrix[0] \longrightarrow ?
- matrix[1] \longrightarrow ?
- matrix[2] \longrightarrow ?

More Fun with Lists

- Do the inner lists all have to be the same size?
- No! Be careful if sizes are not the same.
- ragged = [[1, 2, 3], [4], [5, 6]]
- ragged[0] [1,2,3]
- ragged[1] [4]
- ragged[2] [5,6]

Example

- Define a function nested_total that takes a list of lists of ints and returns the sum of all the values.

```
list = [[1,2], [3], [4,5,6]]
sum = nested_total(list)
print(sum)
```


Exercise

- Define a function nested_avg that takes a list of lists of ints and returns a list with each sublist averaged

```
list = [[1,2], [3], [4,5,6]]
list_avg = nested_avg(list)
print(list_avg)
```

$$
[1.5,3.0,5.0]
$$

Images

- Images are 2D list of tiny squares called pixels
- Each pixel holds RGB values
- Red, Green, and Blue
- Each value is the brightness for the color
- Can make any color from RGB
- Additive vs subtractive (RYB)

Pixels [2,1] red: 255 green: 165 blue: 23

Multi-dimensional Lists

- Can we have more than 2 dimensions?

Multi-dimensional Lists

- Can we have more than 2 dimensions?
- Yes! As many as you would like (within reason).
- image = [[[0, 255, 0], [255, 0, 0]], [[0, 0, 255], [255, 255, 255]]]
$\begin{array}{ll}\bullet \operatorname{image}[0] \\ \cdot \operatorname{image}[0][1] \\ \cdot \operatorname{image[0][1][0]} & \longrightarrow\end{array}$

Example - Sudoku

LEVEL: Beginner

		9	6		7	4	3	1
8				5	3			9
	6		2			5		
		8	9					6
		2		4		7		5
					1			
			5	9	4	3		2
	2	7		3			1	
4			1		2	6	5	

$$
\begin{aligned}
& \text { board }=[[0,0,9,6,0,7,4,3,1] \text {, } \\
& {[8,0,0,0,5,3,0,0,9] \text {, }} \\
& {[0,6,0,2,0,0,5,0,0] \text {, }} \\
& \text { ••• } \\
& [4,0,0,1,0,2,6,5,0]]
\end{aligned}
$$

www.dctech.com/sudoku/

- Rules of the game:
- Grid of 9x9 spaces
- Each row, column, and 3×3 square needs to have the numbers 1-9, without repeating any numbers within row, column or square
- write a function set_value that takes a nested list board and ints i, j, n and updates the (i, j)th entry of board to be the value n

When lists are passed as parameters

- Variables that act like they are copied.
- integer
- float
- boolean
- string
- These types are immutable. You copy the values for parameters.
- Variables that act like their URL is copied.

data

- These types are mutable. You get reference (URL) for parameters. Changes are in place when you assign.

Exercise - Sudoku

LEVEL: Beginner

		9	6		7	4	3	1
8				5	3			9
	6		2			5		
		8	9					6
		2		4		7		5
					1			
			5	9	4	3		2
	2	7		3			1	
4			1		2	6	5	

www.dctech.com/sudoku/

$$
\begin{aligned}
& \text { board }=[[0,0,9,6,0,7,4,3,1] \text {, } \\
& {[8,0,0,0,5,3,0,0,9] \text {, }} \\
& {[0,6,0,2,0,0,5,0,0] \text {, }} \\
& \text { ••• } \\
& [4,0,0,1,0,2,6,5,0]]
\end{aligned}
$$

- write a function check_row_i that takes an int i and a nested list board. The function should return True if and only if row i contains each integer from 1 through 9 exactly once.
- write a function check_column_i that takes an int i and a nested list board. The function should return True if and only if column i contains each integer from 1 through 9 exactly once.

Additional Exercises - Sudoku

LEVEL: Beginner

		9	6		7	4	3	1
8				5	3			9
	6		2			5		
		8	9					6
		2		4		7		5
					1			
			5	9	4	3		2
	2	7		3			1	
4			1		2	6	5	

$$
\begin{aligned}
& \text { board }=[[0,0,9,6,0,7,4,3,1] \text {, } \\
& {[8,0,0,0,5,3,0,0,9] \text {, }} \\
& {[0,6,0,2,0,0,5,0,0] \text {, }} \\
& [4,0,0,1,0,2,6,5,0]]
\end{aligned}
$$

www.dctech.com/sudoku/

- write a function check_block_ij that takes ints i and jand a nested list board. The function should return True if and only if the $3 x 3$ block starting at row i, column j contains each integer from 1 through 9 exactly once
- write a function check_solution that takes a nested list board and returns True if and only if board represents a correctly solved puzzle.

Recap

- Nested lists - multi-dimensional lists
- Image - 2D matrix of pixels

