
CS 51P October 5, 2022

Lecture 10: Lists (cont'd)

Tom Yeh
he/him/his

Class News
• Checkpoint 1 on Monday 10/10

• Review session by TAs

• No assignment this week J
• This week’s lab is an ethics debate

Learning Goals
• Practice coding with lists
• Learn about tuples

Lists
• a list is an ordered set of elements:

• a_list

• many ways to create a list including:

• a list is a sequence, so can index into, loop over, check
for membership, slice, etc

• operators: + and *

• lists are mutable

a_list = [3, 6, 2, 1]
b_list = []
c_list = "a b c d".split()
d_list = open("temp.txt","r").readlines()

‘a’ ‘b’ ‘c’ ‘d’ ‘e’
0 1 2 3 4

List Operations
adding to a list
(updates original list)

• a_list.extend(list)
• a_list.append(elem)

• Different than extend – e.g. [5, 1]

• a_list.insert(index, elem)

other
• min(a_list), max(a_list), len(a_list)
• elem in a_list

– returns bool
• a_list.index(elem)

– returns index of 1st instance of
elem or error

• a_list.insert(index, elem)
– Insert elem at index, shifts down

• a_list.copy()
– Returns a copy of list

• if a_list:
– checks is list is empty

List Operations

removing from a list

• del(a_list[slice])
• a_list.remove(elem)
• removes 1st instance of elem
• error if elem not in a_list

• a_list.pop()
• returns (and removes) a_list[-1]

• a_list.pop(index)
• returns (and removes) a_list[index]

modifying a list

• direct assignment
• a_list[0] = 2

printing a list

>>> print(a_list)
[1, 2, 3, 4, 5]

+ and * operators
• Works on lists, but creates a new list

• >>> a_list = [1, 2, 3]
• >>> new_list = a_list + a_list
• >>> new_list
• [1,2,3,1,2,3]

Code Examples
• num_list = [1, 2, 3, 4]
• x = 5
• How do we check to see if num_list is empty?

• How do we check if num_list contains x?

• How do we store the value of the last element in x?

• How do we store the value of the last element in x and
remove it from the list?

• How do we add the value in x to num_list?

More Code Examples
• num_list = [1, 2, 3, 4]
• second_list = [5, 1]

• What does num_list.insert(2, 51) do?

• How do we remove the first 1 from the combined list?

• How do we combine the two lists? Two ways.

Even More Code Examples
• num_list = [1, 2, 3, 4]
• second_list = [5, 1]

• third_list = num_list + second_list
• Using the + and * operator works like extend, but it

creates a new list. Original lists are unchanged. Need to
assign it to a variable.

List.copy
• list.copy() – returns a copy of the list

• >>> sports = [’tennis’, ‘basketball‘, ‘swimming’, ‘soccer’]
• >>> my_sports = sports.copy()
• >>> my_sports.insert(‘running’)
• >>> my_sports
• ???
• >>> sports
• ???

Assigning a list to another
• >>> sports = [’tennis’, ‘basketball‘, ‘swimming’, ‘soccer’]
• >>> my_sports = sports
• >>> my_sports.insert(‘running’)
• >>> my_sports
• ???
• >>> sports
• ???

min(list) and max(list)
• Returns max value in the list
• >>> numbers = [1, 2, 4, 8]
• >>> numbers.max()
• 8
• >>> numbers.min()
• 1

Looping Through List Elements
• food_list = [‘bacon’, ‘bread’, ‘egg’]

• For loop using range:
• for i in range(len(menu_list)):

• elem = menu_list[i[
• print(elem)

• For-each loop
• for elem in menu_list:

• print(elem)

• Both loops iterate through all elements of the list
• variable elem is set to each element in the list in order

Exercise
• Define a function digits that takes one parameter num (an

positive int) and returns a list of the digits of num

Example
• Define a function word_list that takes a filename as an

argument and returns a list of all the words in that file.

Example – why do we use extend?
• Define a function word_list that takes a filename as an

argument and returns a list of all the words in that file.

• def word_list(filename):
• file = open(filename, "r")
• words = []
• for line in file:
• words_in_line = line.split()
• words.extend(words_in_line)
• file.close()
• return words

Exercise
• Define a function count_words that takes a filename as

input and returns the total number of unique words in that
file

Example
• write a function odds that takes a list of ints and

returns a list of the odd elements

Example
• write a function odds that takes a list of ints and

returns a list of the odd elements

• def odds(int_lst):
• odd_lst = []
• for num in int_lst:
• if num % 2 == 1:
• odd_lst.append(num)

• return odd_lst

Exercises

• write a function double that takes a list of ints
and returns a list with every number doubled

• write a function max that takes a list of ints and
returns the largest value

Questions?

Tuple – another built-in data type
• a tuple is a way to keep track of an ordered collection of

items
• Similar to a list, but immutable (can not be changed in place)
• Ordered: can refer to elements by their position (start with 0)
• Collection: tuple can contain multiple items

• Often used to track data that are related:
• Coordinates for a point: (x, y)
• RGB values for a color: (red, green, blue)

• Can be used to return multiple values from a function

num_tuple = (1, 2, 3)

Creating Tuples
• Creating tuples
• Tuples start/end with parenthesis with elements separated by commas.

• Tuple with 1 element is the same as the element
• >>> tuple_one = (51)
• >>> one = 51
• >>> tuple_one == one
• True

random_tuple = (3, 6, 2, 1)
point = (5.1, 6.2)
addr = (‘333 N College Way’, ‘Claremont’, ‘CA 91711’)
empty_tuple = ()

Accessing Elements of a Tuple
• Consider this tuple: :

• Access elements of tuple just like the list
• Index starts from 0

• a_tuple

• Accessing individual elements:
• a_tuple[0] is ‘a’
• a_tuple[3] is ‘d’

a_tuple = (‘a’, ‘b’, ‘c’, ‘d’, ‘e’)

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

0 1 2 3 4

Accessing Elements of a Tuple
• Consider this tuple: :

• Access elements of tuple just like the list
• Index starts from 0

• a_tuple

• Can not assign to individual elements:
• Tuples are immutable
• a_tuple[0] = ‘x’

• TypeError: ’tuple’ object does not support item assignment

a_tuple = (‘a’, ‘b’, ‘c’, ‘d’, ‘e’)

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

0 1 2 3 4

Accessing Elements of a Tuple
• Consider this tuple: :

• Access elements of tuple just like the list
• Index starts from 0

• a_tuple

• Can not assign to individual elements:
• Tuples are immutable
• No append/pop functions

• To change a tuple, we need to create new tuple and
overwrite variable
• a_tuple = a_tuple[0:2]

a_tuple = (‘a’, ‘b’, ‘c’, ‘d’, ‘e’)

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

0 1 2 3 4

Similar to lists
• Same for

• Indexing
• slicing
• checking for empty tuple
• checking if tuple contains an element
• same ways with for loop to iterate through tuples

• Few functions
• Min, max, sum

Assignment with tuples
• Can use tuples to assign multiple variables at the same

time
• Number of variables on left hand side needs to be the same as the

right hand side

• >>> (x, y) = (5, 1)
• >>> x
• 5
• >>> y
• 1

Tuples and List
• Can create tuple from list
• >>> num_tuple = (1, 2, 3, 4, 5)
• >>> num_list = list(num_tuple)
• >>> num_list
• [1, 2, 3, 4, 5]

• Can create list from tuple
• >>> a_list = [’Red’ , ‘Green’ , ‘Blue’]
• >>> a_tuple = tuple(a_list)
• >>> a_tuple
• (‘Red’ , ‘Green’ , ‘Blue’)

Why Tuples?
• More restrictive because it is immutable
• Tuples are more memory efficient than lists
• Execution speed of using tuples is faster than using lists

Learning Goals
• Practice coding with lists
• Learn about tuples

