
CS 51P October 3, 2022

Lecture 9: Lists

Tom Yeh
he/him/his

Learning Goals
• Learn about lists in Python
• Write code using lists

Programs operate on values
• compute new values using expressions
• store values in variables
• pass values to functions (as arguments)
• pass values to caller (as return value)

Can we operate on multiple values at the
same time?
• Can we define a variable that stores the colors of the

rainbow?

• Can we define a function that returns the squares of all
the numbers in a specified range?

• Can we define a function that returns all the words in a
string that begin with uppercase letters?

Data Structures
• a data structure is a type that stores a collection of

values
• Python provides some built-in data structure types

Sequences
• sequences are ordered sets of values

• ranges are sequences of integers
• strings are sequences of characters
• files are sequences of strings

• we can perform operations on sequences
• indexing (e.g., "hello"[0])
• slicing (e.g., "hello"[1:5])
• looping (with for loop) (e.g., for i in range(1,10):)
• check membership (e.g., char in "abcd")

Can we have a sequence of arbitrary values?

What is a List?
• a list is a way to keep track of an ordered collection of

items
• Items in the list are called elements
• Ordered: can refer to elements by their position (start with 0)
• Collection: list can contain multiple items

• a list dynamically adjusts its size as elements are added
or removed

• a list is a sequence, so can index into, loop over, check
for membership, slice
• Lots of built-in functionality

a_list = [3, 6, 2, 1]

Show me a List!
• Creating lists

• Lists start/end with brackets with elements separated by commas.
• Call a function that returns a list

• List with 1 element is not the same as the element, how do you
compare?
• >>> list_one = [51]
• >>> one = 51
• >>> list_one == one
• False

a_list = [3, 6, 2, 1]
float_list = [5.1, 6.2, 0.23]
str_list = [‘this’, ‘is’, ‘a’, ‘list’]
mix_list = [3, 5.1, ‘is’, True]
empty_list = []

c_list = "a b c d".split()

Accessing Elements of a List
• Consider this list:

• Can think of it like a series of variables that are indexed
• Index starts from 0

• a_list

• Accessing individual elements:
• a_list[0] is ‘a’
• a_list[3] is ‘d’

a_list = [‘a’, ‘b’, ‘c’, ‘d’, ‘e’]

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

0 1 2 3 4

Accessing Elements of a List
• Consider this list:

• Can think of it like a series of variables that are indexed
• Index starts from 0

• a_list

• Accessing individual elements:
• a_list[0] is ‘a’
• a_list[3] is ‘d’

• Can modify individual elements like variables
• a_list[1] = ‘x’

a_list = [‘a’, ‘b’, ‘c’, ‘d’, ‘e’]

‘a’ ‘x’ ‘c’ ‘d’ ‘e’

0 1 2 3 4

Length of a List
• Consider this list:

• Can get length of a list with len function:
• len(a_list) is 5
• Elements indexed from 0 to length - 1

• Code example:
• for I in range(len(a_list)):

• print(str(i) + “->” + a_list[i])

a_list = [‘a’, ‘b’, ‘c’, ‘d’, ‘e’]

Negative indexing – like string slicing
• Consider this list:

• Can do this:
• a_list[-1] is ‘e’
• a_list[-2] is ‘d’

• For negative index, think of –x as len(list) – x
• a_list[-1] is the same as a_list[4]

• What about a_list[6]?

a_list = [‘a’, ‘b’, ‘c’, ‘d’, ‘e’]

Lists as sequences

string = "Hello world !! "
print(string[1:3])
print(string[-1])
print(string[:2])

str_list = string.split()
print(str_list)
print(str_list[1:3])
print(str_list[-1])
print(str_list[:2])

Differences about Lists
• the elements of a list can have any value and any type

• lists are mutable (more on this)

• add elements

• modify elements

• remove elements

a_list = [3.5, 6, [1, 2], "abc"]

a_list.pop() # returns element
del(a_list[0:1])

a_list.append("c")
a_list.extend(["c","b"])

a_list[3] = 3.33333
a_list[:2] = ["a", "b"]

List Operations
adding to a list
(updates original list)

• a_list.extend(list)
• a_list.append(elem)

• Different than extend – e.g. [5, 1]

• a_list.insert(index, elem)

other
• min(a_list), max(a_list), len(a_list)
• elem in a_list

– returns bool
• a_list.index(elem)

– returns index of 1st instance of
elem or error

• a_list.insert(index, elem)
– Insert elem at index, shifts down

• a_list.copy()
– Returns a copy of list

• if a_list:
– checks is list is empty

List Operations

removing from a list

• del(a_list[slice])
• a_list.remove(elem)
• removes 1st instance of elem
• error if elem not in a_list

• a_list.pop()
• returns (and removes) a_list[-1]

• a_list.pop(index)
• returns (and removes) a_list[index]

modifying a list

• direct assignment
• a_list[0] = 2

printing a list

>>> print(a_list)
[1, 2, 3, 4, 5]

+ and * operators
• Works on lists, but creates a new list

• >>> a_list = [1, 2, 3]
• >>> new_list = a_list + a_list
• >>> new_list
• [1,2,3,1,2,3]

a_list = [3.5, 6, [1, 2], "abc"]
a_list[3] = list(range(0,5,2))
a_list[:2] = ["a", "b"]
a_list.extend([5,3,1])

print(len(a_list))
for elem in a_list:

print(str(elem) + ":" + str(type(elem)))

del(a_list[3:5])
a_list.remove("a")
print(a_list)

Exercise

Example
• Can we define a function that returns the squares of all

the numbers in a specified range?

Exercise
• Define a function digits that takes one parameter num (an

positive int) and returns a list of the digits of num

Example
• Define a function word_list that takes a filename as an

argument and returns a list of all the words in that file.

Exercise
• Define a function count_words that takes a filename as

input and returns the total number of unique words in that
file

