
CS 105 May 6, 2019

Lecture 28: Distributed Systems

Why not just use one computer?

• computers fail

• limited resources

• physical location

• nonuniform hardware

What is a distributed system?
• A distributed system is a collection of

autonomous computing elements that
appears to its users as a single, coherent
system

• A distributed system is several
computers doing something together.
Thus, a distributed system has three
primary characteristics: multiple
computers, interconnections, and shared
state.

Properties we want

• Transparency: Hide that resource is physically
distributed across multiple computers

• Reliability: system doesn't go down/go wrong when
component(s) fail

• Consistency: appears as all one system

• Scalability: can grow (add more nodes, memory, etc.)

Example: a networked file system

Client

Client

Client

Client

Server FS

Communication
• Option 1: socket-based communication

• Option 2: remote procedure calls

Remote Procedure Calls
• RPCs are a type of client/server communication
• attempts to make remote procedure calls look like local

procedure calls

{ …
foo();

}

void foo(){
invoke_remote_foo();

}

Problems with RPCs
• Heterogeneity

• Client needs to rendezvous with the server
• Server must dispatch to the required function
• Different address spaces, data representation

• Failure
• What if messages get dropped?
• What if client, server, or network fails?

• Performance
• Procedure call takes ≈ 10 cycles ≈ 3 ns
• RPC in a data center takes ≈ 10 μs (10^3 times slower)
• In the wide area, typically 10^6 times slower

Stubs
• Compiler generates from API stubs for a procedure on the

client and server
• Client stub

• Marshals arguments into machine
-independent format

• Sends request to server
• Waits for response
• Unmarshals result and returns to

caller
• Server stub

• Unmarshals arguments and
builds stack frame

• Calls procedure
• Server stub marshals results and

sends reply

Using RPCs
1. Client calls stub function (pushes

parameters onto stack)

Using RPCs
1. Client calls stub function (pushes

parameters onto stack)
2. Stub marshals parameters to a

network message

Using RPCs
1. Client calls stub function (pushes

parameters onto stack)
2. Stub marshals parameters to a

network message
3. OS sends a network message to

the server

Using RPCs
1. Client calls stub function (pushes

parameters onto stack)
2. Stub marshals parameters to a

network message
3. OS sends a network message to

the server
4. Server OS receives message,

sends it up to stub

Using RPCs
1. Client calls stub function (pushes

parameters onto stack)
2. Stub marshals parameters to a

network message
3. OS sends a network message to

the server
4. Server OS receives message,

sends it up to stub
5. Server stub unmarshals

parameters, calls server function

Using RPCs
1. Client calls stub function (pushes

parameters onto stack)
2. Stub marshals parameters to a

network message
3. OS sends a network message to

the server
4. Server OS receives message,

sends it up to stub
5. Server stub unmarshals

parameters, calls server function

6. Server function runs, returns a
value

Using RPCs
1. Client calls stub function (pushes

parameters onto stack)
2. Stub marshals parameters to a

network message
3. OS sends a network message to

the server
4. Server OS receives message,

sends it up to stub
5. Server stub unmarshals

parameters, calls server function

6. Server function runs, returns a
value

7. Server stub marshals the return
value, sends msg

Using RPCs
1. Client calls stub function (pushes

parameters onto stack)
2. Stub marshals parameters to a

network message
3. OS sends a network message to

the server
4. Server OS receives message,

sends it up to stub
5. Server stub unmarshals

parameters, calls server function

6. Server function runs, returns a
value

7. Server stub marshals the return
value, sends msg

8. Server OS sends the reply back
across the network

Using RPCs
1. Client calls stub function (pushes

parameters onto stack)
2. Stub marshals parameters to a

network message
3. OS sends a network message to

the server
4. Server OS receives message,

sends it up to stub
5. Server stub unmarshals

parameters, calls server function

6. Server function runs, returns a
value

7. Server stub marshals the return
value, sends msg

8. Server OS sends the reply back
across the network

9. Client OS receives the reply and
passes up to stub

Using RPCs
1. Client calls stub function (pushes

parameters onto stack)
2. Stub marshals parameters to a

network message
3. OS sends a network message to

the server
4. Server OS receives message,

sends it up to stub
5. Server stub unmarshals

parameters, calls server function

6. Server function runs, returns a
value

7. Server stub marshals the return
value, sends msg

8. Server OS sends the reply back
across the network

9. Client OS receives the reply and
passes up to stub

10.Client stub unmarshals return
value, returns to client

RPC Failures
• Request from client to server lost

• Reply from server to client lost

• Server crashes after receiving request

• Client crashes after sending request

look the same to client

RPC Failures
• Local computing: if machine fails, application fails
• Distributed computing: if a machine fails, part of

application fails - cannot tell the difference between a
machine failure and network failure

• How to make partial failures transparent to client?

Bad solution: replicate local behavior
• Make remote behavior identical to local behavior: every

partial failure results in complete failure
• Abort and reboot the whole system
• Wait patiently until system is repaired

• Problems with this solution:
• Many catastrophic failures
• Clients block for long periods
• System might not be able to recover

Actual solution: break transparency
• Exactly-once

• Impossible in practice
• At-least-once

• Only for idempotent operations
• At-most-once

• Zero, don’t know, or once
• Zero-or-once

• Transactional semantics

At-least-once semantics
• Keep retrying on client side until you get a response

• Ok for idempotent operations
• Ok if application handles duplication/re-ordering

At-most-once semantics
• Server might get same request twice...
• Must re-send previous reply, not process request

• Implies: keep cache of handled requests/responses
• Discard replies after client confirmed receipt (how?)

• Must be able to identify requests
• Same name, same arguments = same request
• Give each RPC an ID, remember all RPC IDs handled
• Have client number RPC IDs sequentially, keep sliding window of

valid RPC IDs
• Never re-use IDs! Store on disk, or use boot time, or use big random

numbers.

Failure Models
Crash Fault-Stop

Receive
Omission

Send
Omission

Byzantine

Omission

Handling Server Failure
• To tolerate faults, replicate functionality

Client

Client

Client

Client

Server

FS

FS

FSServer

Server

Primary/Backup

Client

Client

Client

Client

Server

Server

Consensus

