Lecture 29: File Systems (cont'd)

CS 105 May 1, 2019

Input and Output

Register file

=

PC

ALU

1r

=

Bus interface

7’
Y d
<

Sys}em bus

Memlory bus

=

/O
bﬂdge

| Ve
memory

CPU

ﬁ

<

b

USB
controller

Mouse Keyboard

!

Graphics
adapter

Display

I/0O bus \ ‘

Disk

controller

e =

Expansion slots for
other devices such
as network adapters

File System Goals

- Persistence: maintain/update user data + internal data
structures on persistent storage devices

- Flexibility: need to support diverse file types and
workloads

- Performance: despite limitations of disks

- Reliability: must store data for long periods of time
despite OS crashes or hardware malfunctions

Storing Files

Possible ways to allocate files:

- Continuous allocation: all bytes together, in order

- Linked structure: each block points to the next block

- Indexed structure: index block points to many other blocks

Indexed Allocation: Fast File System (FFS)

- free-based, multi-level index

- superblock identifies file system's key parameters
- inodes store metadata and pointers
- datablocks store data

blocknumber 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I |

super i-node Remaining blocks
block blocks

Inode Array

FFS inodes

inode array

- Inode
Direct Pointer

- Metadata P
DP
- 12 data pointers oP
' DP
- 3 indirect pointers DP

DP

DP

DP

DP

DP
Direct Pointer
Indirect Pointer |-
. | _Dbl. Indirect Ptr. |-
™ Tripl. Indirect Ptr. |-

Inode

File Metadata

block number 0 1 3 4 5 6 7
blocks:

I I
superblock 1-node blocks Remaining blocks

FFS Index Structures

Inode Array

12

Inode

File Metadata

Direct Pointer

DP

DP

DP

DP

DP

DP

DP

Assume: blocks are 4K,
block references are 4 bytes

Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

A2xAKZA8K directly reachable . o

from the inode

:
:
:
:
:
o
. . T

% E. ... ﬁ:::::::ﬁ]’I:[' 4MB

» L]

with n levels of indirection

1S R N I — I 1
IK 1K ;=2 4GB

=

H . EEN

FFS Directory Structure

- Originally: array of 16 byte entries
- 14 byte file name
- 2 byte i-node number

- Now: linked lists. Each entry contains:

- 4-byte inode number

- Length of name

- Name (UTF8 or some other Unicode encoding)
- First entry is “.”, points to self
- Second entry is “..”, points to parent inode

Reading Files with FFS

To read file /foo/bar/baz, Read & Open:

inode #2 (root always has inumber 2), find root’s blocknum (912)

root directory (in block 912), find foo’s inumber (31)
inode #31, find foo’s blocknum (194)

foo (in block 194), find bar’s inumber (73)

inode #73, find bar’s blocknum (991)

bar (in block 991), find baz’'s inumber (40)

inode #40, find data blocks (302, 913, 301)

data blocks (302, 913, 301)

©NO OO~

bin 47]nd
foo 31 remembe

lusr 98)and 1

baz 40
..Jn1 80
nit 87

31 40

991

Key Characteristics of FFS

- Tree Structure
- efficiently find any block of a file
- High Degree (or fan out)
- minimizes number of seeks
- supports sequential reads & writes
- Fixed Structure
- implementation simplicity
- Asymmetric

- not all data blocks are at the same level
- supports large files

- small files don’t pay large overheads

Free List

To write files, need to keep track of which blocks are
currently free

How to maintain?
- linked list of free blocks
- inefficient (why?)

- linked list of metadata blocks that in turn point to free
blocks —> > '

/ / \

- simple and efficient

/; /\ o\
(/, / 1\ AN
- bitmap ﬁ/l /v \ l\\r
- good because...

Problem 1: Poor Performance

- In a naive implementation of FFS, performance starts bad
and gets worse

- One early implementation delivered only 2% disk
bandwidth

- The root of the problem: poor locality
- data blocks of a file were often far from its inode

- file system would end up highly fragmented: accessing a logically
continuous file would require going back and forth across the

Cylinder group: set of n consecutive cylinders
(e.g., all gray cylinders, for n=3)

Ci((e.g., dark gray)

I

Single tra

(syoeu} Aelb ylep |e “6°9)
J9JU8d WOJ) 82UBISIP SWES 1B S)okJ) (apuljAD

A Solution: Disk Awareness

Abstracting Disk Awareness

- modern drives export a logical address space of blocks
that are (temporally) close

- modern versions of FFS (ext2, ext3, ext4) organize the
drive into block groups composed of consecutive portions
of the disk's logical address space

Group 0 Group 1 Group 2

Locality in File System Accesses

100% A

® Trace
X Random

80% -

(o)
N
o~

Cumulative Frequency

40°/o .

20% -

0%

Allocating Blocks

- FFS manages allocation per block group
- A per-group inode bitmap (ib) and data bitmap (db)

‘-v-’!\ v “ : l

ib db i-node Remaining blocks
blocks

- Allocating directories:

- find a group with a low number of allocated directories & high number
of free inodes; put the directory data + inode there

- Allocating files:

- place a files in the same group as the directory that contains it;
allocate inode and data in same group

- uses first-fit heuristic
- reserves ~10% space to avoid deterioration of first-fit

Page Cache

- To reduce costs of accessing files, most operating
systems make aggressive use of caching

- page cache contains

- heap and stack pages for each process
- file data and metadata from devices (accessed with read() and

write() calls)
- memory-mapped files

What about writes?

- page cache tracks if each page is "dirty" (aka modified)
- dirty pages are periodically flushed to disk

- need to durably store data means writes often dominate
performance

- small writes are expensive

Writing on Magnetic Disks

Seek Time

0

Spindle — Head .
Arm L

(
—
—
Q
®)
>

Surface

Sector
Platter —

Surface—\! . Rotational
rm

Assembly Latency
Track —

- Seek: to get to the track (1-15ms)

- Rotational Latency: to get to the
sector (2-8ms)

- Transfer: get bits off the disk
(.005ms/512-byte sector)

Motor Motor

Writing on Flash Disks (SSDs)

Charae is stored in Floating Gaf - can't write 1 byte/word
arge IS stored In rioatin dale .

(can hage Single and Multi-LeVel CeIIs)g (mUSt erte Wh0|e
blocks)

- limited # of erase cycles
per block (memory wear)

- 103-106 erases and the
cell wears out

BitLine

Ground BitLine
Select Word Word Word Word Word Word Word Word Select
isto

- reads can “disturb”
nearby words and
overwrite them with
garbage

Copy-on-write (COW)

- key idea: never overwrite files or directories in place; write
new copy of updated version to previously unused
location on disk.

- also used to optimize copies from fork(), exec(), etc.

Problem 2: Poor Reliability

- Goal: must store data (correctly!) for long periods of time

- Reality: disks aren't perfect

Full Disk Error

- Damage to disk head, electronic failure, wear out

16 %

14 %

12 %

10%

21, 318

HITACHI seagate @ Wostem

Latent-Sector Errors

- latent-sector errors arise when a disk sector (or group of
sectors) has been damaged in some way

- Example: head crash

Fraction of total disks with at least 1 error

0.22
0.2
0.18

0.16
0.14
0.12
01
0.08 r
0.06
0.04
0.02

C-1
| E-1
E-2

T

~ R

-

Y
-

12
Disk age (months)

18

24

Data Corruption

- data corruption can be caused by write interference, head
height, leaked charge, cosmic rays, etc.

- approximately one sector will be corrupted per 1014 bits
read (about a 2% chance if you read a 2TB disk)

Error Correcting Codes

- an error-correcting code is a rendundant encoding of data
that allows information to be recovered from a corrupted

copy

- used by disks to automatically correct for disk errors

- balances storage overhead versus error rate

Checksums

- a checksum is the result of a function that takes a chunk
of data (e.g., a 4KB block) and returns a short summary
(e.g., 4 or 8 bytes)

- Example:
- XOr
- cyclic redundancy check (CRC)

- File systems can store checksums for metadata and/or file
contents

RAID

- a redundant array of inexpensive disks (RAID) is a system
that spreads data redundantly across multiple disks in
order to tolerate individual disk failures

(Disk 0 Y Disk 1
data 0 data O
data 1 data 1
data 2 data 2
data 3 data 3
data 4 data 4
data 5 data 5
data 6 data 6

(Disk 0 (Disk 1 (Disk 2) (_Disk 3 > (_Disk 4
parity 0-3 data 0 data 1 data 2 data 3
data 4 parity 4-7 data 5 data 6 data 7
data 8 data 9 parity 8-11 data 10 data 11
data 12 data 13 data 14 parity 12-15 data 15
data 16 data 17 data 18 data 19 parity 16-19
N~ I~ AN AN A~

