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Lecture 29: File Systems (cont'd)
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File System Goals
• Persistence: maintain/update user data + internal data 

structures on persistent storage devices

• Flexibility: need to support diverse file types and 
workloads

• Performance: despite limitations of disks

• Reliability: must store data for long periods of time 
despite OS crashes or hardware malfunctions 



Storing Files
Possible ways to allocate files:
• Continuous allocation: all bytes together, in order
• Linked structure: each block points to the next block
• Indexed structure: index block points to many other blocks



Indexed Allocation: Fast File System (FFS)
• tree-based, multi-level index

• superblock identifies file system's key parameters
• inodes store metadata and pointers
• datablocks store data



FFS inodes
inode array 
• inode

• Metadata
• 12 data pointers
• 3 indirect pointers 



FFS Index Structures



FFS Directory Structure
• Originally: array of 16 byte entries 

• 14 byte file name 
• 2 byte i-node number 

• Now: linked lists. Each entry contains: 
• 4-byte inode number 
• Length of name 
• Name (UTF8 or some other Unicode encoding) 

• First entry is “.”, points to self
• Second entry is “..”, points to parent inode



Reading Files with FFS
To read file /foo/bar/baz, Read & Open: 
1. inode #2 (root always has inumber 2), find root’s blocknum (912) 
2. root directory (in block 912), find foo’s inumber (31) 
3. inode #31, find foo’s blocknum (194) 
4. foo (in block 194), find bar’s inumber (73) 
5. inode #73, find bar’s blocknum (991) 
6. bar (in block 991), find baz’s inumber (40) 
7. inode #40, find data blocks (302, 913, 301) 
8. data blocks (302, 913, 301) 



Key Characteristics of FFS
• Tree Structure 

• efficiently find any block of a file 
• High Degree (or fan out) 

• minimizes number of seeks 
• supports sequential reads & writes 

• Fixed Structure 
• implementation simplicity 

• Asymmetric 
• not all data blocks are at the same level 
• supports large files
• small files don’t pay large overheads 



Free List
To write files, need to keep track of which blocks are 
currently free
How to maintain?
• linked list of free blocks 

• inefficient (why?)
• linked list of metadata blocks that in turn point to free 

blocks 
• simple and efficient 

• bitmap 
• good because…



Problem 1: Poor Performance
• In a naïve implementation of FFS, performance starts bad 

and gets worse 
• One early implementation delivered only 2% disk 

bandwidth
• The root of the problem: poor locality

• data blocks of a file were often far from its inode
• file system would end up highly fragmented: accessing a  logically 

continuous file would require going back and forth across the 



A Solution: Disk Awareness
Single track (e.g., dark gray)
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Abstracting Disk Awareness
• modern drives export a logical address space of blocks 

that are (temporally) close 
• modern versions of FFS (ext2, ext3, ext4) organize the 

drive into block groups composed of consecutive portions 
of the disk's logical address space



Locality in File System Accesses



Allocating Blocks
• FFS manages allocation per block group
• A per-group inode bitmap (ib) and data bitmap (db)

• Allocating directories: 
• find a group with a low number of allocated directories & high number 

of free inodes; put the directory data + inode there
• Allocating files: 

• place a files in the same group as the directory that contains it; 
allocate inode and data in same group

• uses first-fit heuristic
• reserves ~10% space to avoid deterioration of first-fit

ib db



Page Cache
• To reduce costs of accessing files, most operating 

systems make aggressive use of caching
• page cache contains

• heap and stack pages for each process
• file data and metadata from devices (accessed with read() and 

write() calls)
• memory-mapped files



What about writes?
• page cache tracks if each page is "dirty" (aka modified)
• dirty pages are periodically flushed to disk
• need to durably store data means writes often dominate 

performance
• small writes are expensive



Writing on Magnetic Disks

• Seek: to get to the track (1-15ms)
• Rotational Latency: to get to the 

sector (2-8ms) 
• Transfer: get bits off the disk   

(.005ms/512-byte sector) 



Writing on Flash Disks (SSDs)

• can’t write 1 byte/word 
(must write whole 
blocks) 

• limited # of erase cycles 
per block (memory wear)
• 103-106 erases and the 

cell wears out 

• reads can “disturb” 
nearby words and 
overwrite them with 
garbage 



Copy-on-write (COW)
• key idea: never overwrite files or directories in place; write 

new copy of updated version to previously unused 
location on disk.

• also used to optimize copies from fork(), exec(), etc. 



Problem 2: Poor Reliability
• Goal: must store data (correctly!) for long periods of time

• Reality: disks aren't perfect



Full Disk Error
• Damage to disk head, electronic failure, wear out



Latent-Sector Errors
• latent-sector errors arise when a disk sector (or group of 

sectors) has been damaged in some way
• Example: head crash



Data Corruption
• data corruption can be caused by write interference, head 

height, leaked charge, cosmic rays, etc.
• approximately one sector will be corrupted per 10^14 bits 

read (about a 2% chance if you read a 2TB disk)



Error Correcting Codes
• an error-correcting code is a rendundant encoding of data 

that allows information to be recovered from a corrupted 
copy

• used by disks to automatically correct for disk errors

• balances storage overhead versus error rate



Checksums
• a checksum is the result of a function that takes a chunk 

of data (e.g., a 4KB block) and returns a short summary 
(e.g., 4 or 8 bytes)

• Example: 
• xor
• cyclic redundancy check (CRC)

• File systems can store checksums for metadata and/or file 
contents



RAID
• a redundant array of inexpensive disks (RAID) is a system 

that spreads data redundantly across multiple disks in 
order to tolerate individual disk failures


