
CS 105 May 1, 2019

Lecture 29: File Systems (cont'd)

Input and Output

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display
Disk

I/O bus Expansion slots for
other devices such
as network adapters

PC

File System Goals
• Persistence: maintain/update user data + internal data

structures on persistent storage devices

• Flexibility: need to support diverse file types and
workloads

• Performance: despite limitations of disks

• Reliability: must store data for long periods of time
despite OS crashes or hardware malfunctions

Storing Files
Possible ways to allocate files:
• Continuous allocation: all bytes together, in order
• Linked structure: each block points to the next block
• Indexed structure: index block points to many other blocks

Indexed Allocation: Fast File System (FFS)
• tree-based, multi-level index

• superblock identifies file system's key parameters
• inodes store metadata and pointers
• datablocks store data

FFS inodes
inode array
• inode

• Metadata
• 12 data pointers
• 3 indirect pointers

FFS Index Structures

FFS Directory Structure
• Originally: array of 16 byte entries

• 14 byte file name
• 2 byte i-node number

• Now: linked lists. Each entry contains:
• 4-byte inode number
• Length of name
• Name (UTF8 or some other Unicode encoding)

• First entry is “.”, points to self
• Second entry is “..”, points to parent inode

Reading Files with FFS
To read file /foo/bar/baz, Read & Open:
1. inode #2 (root always has inumber 2), find root’s blocknum (912)
2. root directory (in block 912), find foo’s inumber (31)
3. inode #31, find foo’s blocknum (194)
4. foo (in block 194), find bar’s inumber (73)
5. inode #73, find bar’s blocknum (991)
6. bar (in block 991), find baz’s inumber (40)
7. inode #40, find data blocks (302, 913, 301)
8. data blocks (302, 913, 301)

Key Characteristics of FFS
• Tree Structure

• efficiently find any block of a file
• High Degree (or fan out)

• minimizes number of seeks
• supports sequential reads & writes

• Fixed Structure
• implementation simplicity

• Asymmetric
• not all data blocks are at the same level
• supports large files
• small files don’t pay large overheads

Free List
To write files, need to keep track of which blocks are
currently free
How to maintain?
• linked list of free blocks

• inefficient (why?)
• linked list of metadata blocks that in turn point to free

blocks
• simple and efficient

• bitmap
• good because…

Problem 1: Poor Performance
• In a naïve implementation of FFS, performance starts bad

and gets worse
• One early implementation delivered only 2% disk

bandwidth
• The root of the problem: poor locality

• data blocks of a file were often far from its inode
• file system would end up highly fragmented: accessing a logically

continuous file would require going back and forth across the

A Solution: Disk Awareness
Single track (e.g., dark gray)

C
yl

in
de

r:
tra

ck
s

at
 s

am
e

di
st

an
ce

 fr
om

 c
en

te
r

(e
.g

.,
al

l d
ar

k
gr

ay
 tr

ac
ks

)
C

ylinder group: set of n consecutive cylinders
(e.g., all gray cylinders, for n=3)

Abstracting Disk Awareness
• modern drives export a logical address space of blocks

that are (temporally) close
• modern versions of FFS (ext2, ext3, ext4) organize the

drive into block groups composed of consecutive portions
of the disk's logical address space

Locality in File System Accesses

Allocating Blocks
• FFS manages allocation per block group
• A per-group inode bitmap (ib) and data bitmap (db)

• Allocating directories:
• find a group with a low number of allocated directories & high number

of free inodes; put the directory data + inode there
• Allocating files:

• place a files in the same group as the directory that contains it;
allocate inode and data in same group

• uses first-fit heuristic
• reserves ~10% space to avoid deterioration of first-fit

ib db

Page Cache
• To reduce costs of accessing files, most operating

systems make aggressive use of caching
• page cache contains

• heap and stack pages for each process
• file data and metadata from devices (accessed with read() and

write() calls)
• memory-mapped files

What about writes?
• page cache tracks if each page is "dirty" (aka modified)
• dirty pages are periodically flushed to disk
• need to durably store data means writes often dominate

performance
• small writes are expensive

Writing on Magnetic Disks

• Seek: to get to the track (1-15ms)
• Rotational Latency: to get to the

sector (2-8ms)
• Transfer: get bits off the disk

(.005ms/512-byte sector)

Writing on Flash Disks (SSDs)

• can’t write 1 byte/word
(must write whole
blocks)

• limited # of erase cycles
per block (memory wear)
• 103-106 erases and the

cell wears out

• reads can “disturb”
nearby words and
overwrite them with
garbage

Copy-on-write (COW)
• key idea: never overwrite files or directories in place; write

new copy of updated version to previously unused
location on disk.

• also used to optimize copies from fork(), exec(), etc.

Problem 2: Poor Reliability
• Goal: must store data (correctly!) for long periods of time

• Reality: disks aren't perfect

Full Disk Error
• Damage to disk head, electronic failure, wear out

Latent-Sector Errors
• latent-sector errors arise when a disk sector (or group of

sectors) has been damaged in some way
• Example: head crash

Data Corruption
• data corruption can be caused by write interference, head

height, leaked charge, cosmic rays, etc.
• approximately one sector will be corrupted per 10^14 bits

read (about a 2% chance if you read a 2TB disk)

Error Correcting Codes
• an error-correcting code is a rendundant encoding of data

that allows information to be recovered from a corrupted
copy

• used by disks to automatically correct for disk errors

• balances storage overhead versus error rate

Checksums
• a checksum is the result of a function that takes a chunk

of data (e.g., a 4KB block) and returns a short summary
(e.g., 4 or 8 bytes)

• Example:
• xor
• cyclic redundancy check (CRC)

• File systems can store checksums for metadata and/or file
contents

RAID
• a redundant array of inexpensive disks (RAID) is a system

that spreads data redundantly across multiple disks in
order to tolerate individual disk failures

