Lecture 26: File Systems

CS 105 April 29, 2019

Input and Output

i EE

-

Input and Output

Register file

=

PC

ALU

1r

=

Bus interface

7’
Y d
<

Sys}em bus

Memlory bus

=

/O
bﬂdge

| Ve
memory

CPU

ﬁ

<

b

USB
controller

Mouse Keyboard

!

Graphics
adapter

Display

I/0O bus \ ‘

Disk

controller

e =

Expansion slots for
other devices such
as network adapters

Unix I/O Overview

- All /0O devices are represented as files:
- /dev/sda2 (/usr disk partition)
- /dev/tty2 (terminal)

- A Linux file is a sequence of m bytes:
° Bo, B1, eren g Bk, peen g Bm_1

- Each]process created by a Linux shell begins life with three
open files associated with a terminal:

- 0: standard input (stdin)
- 1: standard output (stdout)
- 2: standard error (stderr)
- Elegant mapping of files to devices allows kernel to export
simple interface called Unix I/O:
- open, close, read, write, seek

Kernel Data Structures

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
__ File A .
stdin fd0 — Cile access
stdout fd 1 -) . .
stderr fd?2 File pos Fllle size
fd 3 refcnt=1 File type
//':ile access
File pos F.I|e size
refcnt=1 File type

>open_listenfd

Await connection

request from
next client

\
Sockets Interface [wows
socket
getaddrinfo 1
4 bll’ld
socket 1
open clientfd< ,
- listen
Connection 1 /
request .
connect == ———=— > accept)
v v
Client / > write > read <
Server 1 1
Session el) e
close — - —EQF— - - read

Hardware and Software Interfaces

S HTTP, FTP, DNS
Appllcatlon (these” are usually in libraries) app
OS

Transport TCP, UDP

CPU memory
Network IP, ICMP (ping) I
bus
Link Ethernet, WiFi
: : NIC
. wires, signal
AP encoding

(Hard to draw firm lines here)

Storage Devices 1950
5 MB
- Magnetic Disks
- Storage that rarely becomes corrupted
- Large capacity at low cost 2019
- Block-level random access WD Red
- Slow performance for random access 1078
- Better performance for streaming access
- Solid State Disks (Flash Memory)
- Storage that rarely becomes corrupted
- Capacity at moderate cost (50x magnetic disk) e 2019
- Block-level random access ! Samsung 840
- Good performance for random reads g 250 GB

- Not-as-good performance for random writes

Comparing Storage Media

RAM HDD SSD

Typical Size 8 GB 1TB 256 GB
Cost

$10 per GB | $0.05 per GB | $0.32 per GB
Power 3 W 25\W 1.5W
Read Latency 15 ns 15 ms 30 US|
Read Speed (Seq.) 8000 MB/s 175 MB/s 550 MB/s|
Read/Write Granularity *

word sector page

Power Reliance volatile non-volatile non-volatile

File Systems 101

- Long-term information storage goals
- should be able to store large amounts of information
- information must survive processes, power failures, etc.
- processes must be able to find information
- needs to support concurrent accesses by multiple processes

- Solution: the File System Abstraction

- presents processes with persistent, named data
- two main components: files and directories

The File Abstraction

- a file is a named collection of data
- name is defined on creation
- processes use name to subsequently access that file
- processes don't care where on disk a file is stored

- a file is comprised of two parts:

- data: information a user or application puts in a file, stored as an
array of untyped bytes

- metadata: information added and managed by the OS (e.g., size,
owner, security info, modification time)

Directories

- a directory provides names for files:
- a list of human-readable names
- a mapping from each name to a specific underlying file or directory

File directory N Fille) index Storage
— mber ———)
Name: ~—— Y structure Block
871
foo.txt

foo.txt 871

music 320
work 219

Path Names

- Absolute: path of file from the root directory
/home/ada/projects/babbage.txt

- Relative: path of file from the current working directory
projects/babbage.txt

- Two special entries in each Unix directory:

- . = current directory
- .. = parent directory

Directories

- OS uses path name to find directories and files

) e S—
File2 | bin 737
I | usr 924
home 158 |- VA
.. |ada 682
“+> File 158 | eleanor 818
"lhome" | rett 830 |-
1 S
> File 818 | music 320
"/home/eleanor" | work 219
foo.txt 871 |-
t> File 871 The quikx
"lhome/eleanor/foo.txt" | Prown fox
jumped
over the
- Directory maps file name to attributes tazy dog.

and locations

Basic File System Operations

- Create a file
- Write to a file
- Read from a file

- Seek to somewhere in a file
- Delete a file

How should we implement this?

File System Challenges

- Performance: despite limitations of disks

- Flexibility: need to support diverse file types and
workloads

- Persistence: maintain/update user data + internal data
structures on persistent storage devices

- Reliability: must store data for long periods of time
despite OS crashes or hardware malfunctions

Implementation Basics

- Directories: file name -> file number
- Index structures: file number -> block
- Free space maps: find a free block (ideally nearby)

- Locality heuristics:
- group directories
- make writes sequential
- defragment

File System Properties

- Most files are small
- need strong support for small files (optimize the common case)
- block size can't be too big

- Some files are very large
- must handle large files
- large file access should be reasonably efficient

File System Layout

- File systems are stored on disks
- disks can be divided into one or more partitions
- Sector 0 of disk called Master Boot Record
- end of MBR: partition table (contains partitions' start & end addr.)

- First block of each partition has boot block
- loaded by MBR and executed on boot

- PARTITION #1

MBR PARTITION
TABLE

Storing Files

Possible ways to allocate files:

- Continuous allocation: all bytes together, in order

- Linked structure: each block points to the next block

- Indexed structure: index block points to many other blocks

Which is the best?

For sequential access?
For random access?
For small files?

For large files?

Continuous Allocation

All bytes together, in order

- Simple: state required per file = start block & size
- Efficient: entire file can be read with one seek

- Fragmentation: external is bigger problem

- Usability: user needs to know size of file at time of
creation

filel file2 file3 filed4d file5

Linked Allocation

Each file is stored as linked list of blocks: First word of each
block points to next block, rest of disk block is file data

- Space Utilization: no space lost to external
fragmentation

- Simple: only need to store 1st block of each file
- Performance: random access is slow

- Space Utilization: overhead of pointers
File A

Physical
Block

File Allocation Table (FAT) File System

- Developed by Microsoft for MS-DOS

- Still widely used for flash drives, camera cards, etc.
- Fat-32 supports 248 blocks and files of 232 — 1 bytes
- File table:

- Linear map of all blocks on disk
- Each file a linked list of blocks

decoupled
physica”y

R —

32 bit entries

FAT File System

- 1 entry per block
- EOF for last block
- 0 indicates free block

- directory entry maps
name to FAT index

Directory

bart.txt

9

maggie.txt

12

0
1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

........

EOF

o o0

Coonet

..............

.
H
. H
H
.
H H
H H
H H
H H
. H
H H
H
H
H

H
.
H
H
.
N
H
.
.
H
H
H
H
H
H
H

Data Blocks

File 9 Block 3

File 9 Block O
File 9 Block 1
File 9 Block 2

File 9 Block 4

File 9

M File 12

. A \ N
FAT Directory Structure |
music 320
Folder: a file with 32-byte entries work 219
Each Entry: foo.txt 871

- 8 byte name + 3 byte extension (ASCII)
- creation date and time

- last modification date and time

- first block in the file (index into FAT)

- size of the file
- Long and Unicode file names take up multiple entries

Evaluating Fat

How is FAT good?

- Simple: state required per file: start block only
- Widely supported

- No external fragmentation

- block used only for data

How is FAT bad?

- Poor locality

- Many file seeks (unless entire FAT in memory)
- Poor random access

- Limited metadata

- Limited access control

- Limitations on volume and file size

- No support for reliability techniques

Indexed Allocation: Fast File System (FFS)

- free-based, multi-level index

- superblock identifies file system's key parameters
- inodes store metadata and pointers
- datablocks store data

blocknumber 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I |

super i-node Remaining blocks
block blocks

FFS Superblock

- Identifies file system’s key parameters:
- type
- block size

- inode array location and size
- location of free list

Inode Array

FFS inodes

inode array

- Inode
Direct Pointer

- Metadata P
DP
- 12 data pointers oP
' DP
- 3 indirect pointers DP

DP

DP

DP

DP

DP
Direct Pointer
Indirect Pointer |-
. | _Dbl. Indirect Ptr. |-
™ Tripl. Indirect Ptr. |-

Inode

File Metadata

block number 0 1 3 4 5 6 7
blocks:

I I
superblock 1-node blocks Remaining blocks

Inode Metadata

- Type
- ordinary file
- directory
- symbolic link
- special device

- Size of the file (in #bytes)

- # links to the i-node

- Owner (user id and group id)
- Protection bits

- Times: creation, last accessed, last
modified

File
Metadata

Direct Pointer

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

Direct Pointer

Indirect Pointer

Dbl. Indirect Ptr.

Tripl. Indirect Ptr.

FFS Index Structures

Inode Array Triple Double
Indirect Indirect Indirect Data
Inode Blocks Blocks Blocks Blocks

File Metadata

Direct Pointer - 1§
DP '

DP g é..)D::::::::i

DP
DP
DP
DP
DP > D,I:I >
DP

DP Pl s
Direct Pointer eeecescsescsncnens ,D >

Indirect Pointer feeeeeeeeeseesereness fod
: :...................) B LT TP P PR 3 D P T T TP RP PR
Dbl. Indirect Ptr. oo D D -------- '

) Tripl. Indirect Ptr, [r--rweseeeeees o[. S >

FFS Index Structures

Inode Array

12

Inode

File Metadata

Direct Pointer

DP

DP

DP

DP

DP

DP

DP

Assume: blocks are 4K,
block references are 4 bytes

Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

A2xAKZA8K directly reachable . o

from the inode

:
:
:
:
:
o
. . T

% E. ... ﬁ:::::::ﬁ]’I:[' 4MB

» L]

with n levels of indirection

1S R N I — I 1
IK 1K ;=2 4GB

=

H . EEN

Key Characteristics of FFS

- Tree Structure
- efficiently find any block of a file
- High Degree (or fan out)
- minimizes number of seeks
- supports sequential reads & writes
- Fixed Structure
- implementation simplicity
- Asymmetric

- not all data blocks are at the same level
- supports large files

- small files don’t pay large overheads

