
CS 105 April 29, 2019

Lecture 26: File Systems

Input and Output

Input and Output

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display
Disk

I/O bus Expansion slots for
other devices such
as network adapters

PC

Unix I/O Overview
• All I/O devices are represented as files:

• /dev/sda2 (/usr disk partition)
• /dev/tty2 (terminal)

• A Linux file is a sequence of m bytes:
• B0 , B1 , , Bk , , Bm-1

• Each process created by a Linux shell begins life with three
open files associated with a terminal:
• 0: standard input (stdin)
• 1: standard output (stdout)
• 2: standard error (stderr)

• Elegant mapping of files to devices allows kernel to export
simple interface called Unix I/O:
• open, close, read, write, seek

4

Kernel Data Structures

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A

File B

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

read

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Hardware and Software Interfaces

Storage Devices
• Magnetic Disks

• Storage that rarely becomes corrupted
• Large capacity at low cost
• Block-level random access
• Slow performance for random access
• Better performance for streaming access

• Solid State Disks (Flash Memory)
• Storage that rarely becomes corrupted
• Capacity at moderate cost (50x magnetic disk)
• Block-level random access
• Good performance for random reads
• Not-as-good performance for random writes

1950s
IBM 350
5 MB

2019
WD Red
10 TB

2019
Samsung 840
250 GB

Comparing Storage Media

File Systems 101
• Long-term information storage goals

• should be able to store large amounts of information
• information must survive processes, power failures, etc.
• processes must be able to find information
• needs to support concurrent accesses by multiple processes

• Solution: the File System Abstraction
• presents processes with persistent, named data
• two main components: files and directories

The File Abstraction
• a file is a named collection of data

• name is defined on creation
• processes use name to subsequently access that file
• processes don't care where on disk a file is stored

• a file is comprised of two parts:
• data: information a user or application puts in a file, stored as an

array of untyped bytes
• metadata: information added and managed by the OS (e.g., size,

owner, security info, modification time)

Directories
• a directory provides names for files:

• a list of human-readable names
• a mapping from each name to a specific underlying file or directory

Path Names
• Absolute: path of file from the root directory

/home/ada/projects/babbage.txt
• Relative: path of file from the current working directory

projects/babbage.txt

• Two special entries in each Unix directory:
• . = current directory
• .. = parent directory

Directories
• OS uses path name to find directories and files

• Directory maps file name to attributes
and locations

File 158
"/home"

File 818
"/home/eleanor"

ada 682
eleanor 818
rett 830

music 320
work 219
foo.txt 871

File 871
"/home/eleanor/foo.txt"

Basic File System Operations
• Create a file
• Write to a file
• Read from a file
• Seek to somewhere in a file
• Delete a file

How should we implement this?

File System Challenges
• Performance: despite limitations of disks

• Flexibility: need to support diverse file types and
workloads

• Persistence: maintain/update user data + internal data
structures on persistent storage devices

• Reliability: must store data for long periods of time
despite OS crashes or hardware malfunctions

Implementation Basics
• Directories: file name -> file number

• Index structures: file number -> block

• Free space maps: find a free block (ideally nearby)

• Locality heuristics:
• group directories
• make writes sequential
• defragment

File System Properties
• Most files are small

• need strong support for small files (optimize the common case)
• block size can't be too big

• Some files are very large
• must handle large files
• large file access should be reasonably efficient

File System Layout
• File systems are stored on disks

• disks can be divided into one or more partitions
• Sector 0 of disk called Master Boot Record
• end of MBR: partition table (contains partitions' start & end addr.)

• First block of each partition has boot block
• loaded by MBR and executed on boot

Storing Files
Possible ways to allocate files:
• Continuous allocation: all bytes together, in order
• Linked structure: each block points to the next block
• Indexed structure: index block points to many other blocks

Which is the best?
For sequential access?
For random access?
For small files?
For large files?

Continuous Allocation
All bytes together, in order
• Simple: state required per file = start block & size
• Efficient: entire file can be read with one seek
• Fragmentation: external is bigger problem
• Usability: user needs to know size of file at time of

creation

Linked Allocation
Each file is stored as linked list of blocks: First word of each
block points to next block, rest of disk block is file data
• Space Utilization: no space lost to external

fragmentation
• Simple: only need to store 1st block of each file
• Performance: random access is slow
• Space Utilization: overhead of pointers

File Allocation Table (FAT) File System
• Developed by Microsoft for MS-DOS
• Still widely used for flash drives, camera cards, etc.
• Fat-32 supports 2"# blocks and files of 2$" − 1 bytes
• File table:

• Linear map of all blocks on disk
• Each file a linked list of blocks

FAT File System
• 1 entry per block
• EOF for last block
• 0 indicates free block
• directory entry maps
name to FAT index

FAT Directory Structure
Folder: a file with 32-byte entries
Each Entry:
• 8 byte name + 3 byte extension (ASCII)
• creation date and time
• last modification date and time
• first block in the file (index into FAT)
• size of the file
• Long and Unicode file names take up multiple entries

Evaluating Fat
How is FAT good?
• Simple: state required per file: start block only
• Widely supported
• No external fragmentation
• block used only for data

How is FAT bad?
• Poor locality
• Many file seeks (unless entire FAT in memory)
• Poor random access
• Limited metadata
• Limited access control
• Limitations on volume and file size
• No support for reliability techniques

Indexed Allocation: Fast File System (FFS)
• tree-based, multi-level index

• superblock identifies file system's key parameters
• inodes store metadata and pointers
• datablocks store data

FFS Superblock
• Identifies file system’s key parameters:

• type
• block size
• inode array location and size
• location of free list

FFS inodes
inode array
• inode

• Metadata
• 12 data pointers
• 3 indirect pointers

inode Metadata
• Type

• ordinary file
• directory
• symbolic link
• special device

• Size of the file (in #bytes)
• # links to the i-node
• Owner (user id and group id)
• Protection bits
• Times: creation, last accessed, last
modified

FFS Index Structures

FFS Index Structures

Key Characteristics of FFS
• Tree Structure

• efficiently find any block of a file
• High Degree (or fan out)

• minimizes number of seeks
• supports sequential reads & writes

• Fixed Structure
• implementation simplicity

• Asymmetric
• not all data blocks are at the same level
• supports large files
• small files don’t pay large overheads

